Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 77–85
DOI: https://doi.org/10.15826/umj.2023.2.006
(Mi umj205)
 

Canonical approximations in impulse stabilization for a system with aftereffect

Yurii. F. Dolgii

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: For optimal stabilization of an autonomous linear system of differential equations with aftereffect and impulse controls, the formulation of the problem in the functional state space is used. For a system with aftereffect, approximating systems of ordinary differential equations proposed by S.N. Shimanov and J. Hale are used. A method for constructing approximations for optimal stabilizing control of an autonomous linear system with aftereffect and impulse controls is proposed. Matrix Riccati equations are used to find approximating controls.
Keywords: Differential equation with aftereffect, canonical approximation, optimal stabilization, impulse control.
Funding agency Grant number
Russian Science Foundation 22-21-00714
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yurii. F. Dolgii, “Canonical approximations in impulse stabilization for a system with aftereffect”, Ural Math. J., 9:2 (2023), 77–85
Citation in format AMSBIB
\Bibitem{Dol23}
\by Yurii.~F.~Dolgii
\paper Canonical approximations in impulse stabilization for a system with aftereffect
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 77--85
\mathnet{http://mi.mathnet.ru/umj205}
\crossref{https://doi.org/10.15826/umj.2023.2.006}
\elib{https://elibrary.ru/item.asp?id=59690651}
\edn{https://elibrary.ru/IFMGZL}
Linking options:
  • https://www.mathnet.ru/eng/umj205
  • https://www.mathnet.ru/eng/umj/v9/i2/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:45
    Full-text PDF :31
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024