Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 46–59
DOI: https://doi.org/10.15826/umj.2023.2.004
(Mi umj203)
 

$\mathcal{I}^{\mathcal{K}}$-sequential topology

H. S. Behmanush, M. Küçükaslan

Mersin Üniversitesi
References:
Abstract: In the literature, $\mathcal{I}$-convergence (or convergence in $\mathcal{I}$) was first introduced in [11].
Later related notions of $\mathcal{I}$-sequential topological space and $\mathcal{I}^*$-sequential topological space were introduced and studied. From the definitions it is clear that $\mathcal{I}^*$-sequential topological space is larger(finer) than $\mathcal{I}$-sequential topological space. This rises a question: is there any topology (different from discrete topology) on the topological space $\mathcal{X}$ which is finer than $\mathcal{I}^*$-topological space? In this paper, we tried to find the answer to the question. We define $\mathcal{I}^{\mathcal{K}}$-sequential topology for any ideals $\mathcal{I}$, $\mathcal{K}$ and study main properties of it. First of all, some fundamental results about $\mathcal{I}^{\mathcal{K}}$-convergence of a sequence in a topological space $(\mathcal{X} ,\mathcal{T})$ are derived. After that, $\mathcal{I}^{\mathcal{K}}$-continuity and the subspace of the $\mathcal{I}^{\mathcal{K}}$-sequential topological space are investigated.
Keywords: ideal convergence, $\mathcal{I}^{\mathcal{K}}$-convergence, sequential topology, $\mathcal{I}^{\mathcal{K}}$-sequential topology.
Bibliographic databases:
Document Type: Article
Language: English
Citation: H. S. Behmanush, M. Küçükaslan, “$\mathcal{I}^{\mathcal{K}}$-sequential topology”, Ural Math. J., 9:2 (2023), 46–59
Citation in format AMSBIB
\Bibitem{BehKuc23}
\by H.~S.~Behmanush, M.~K\"u{\c c}\"ukaslan
\paper $\mathcal{I}^{\mathcal{K}}$-sequential topology
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 46--59
\mathnet{http://mi.mathnet.ru/umj203}
\crossref{https://doi.org/10.15826/umj.2023.2.004}
\elib{https://elibrary.ru/item.asp?id=59690645}
\edn{https://elibrary.ru/CMMYPK}
Linking options:
  • https://www.mathnet.ru/eng/umj203
  • https://www.mathnet.ru/eng/umj/v9/i2/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :17
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024