Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 36–45
DOI: https://doi.org/10.15826/umj.2023.2.003
(Mi umj202)
 

On sequences of elementary transformations in the integer partitions lattice

Vitaly A. Baranskii, Tatiana A. Senchonok

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: An integer partition, or simply, a partition is a nonincreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of nonnegative integers that contains only a finite number of nonzero components. The length $\ell(\lambda)$ of a partition $\lambda$ is the number of its nonzero components. For convenience, a partition $\lambda$ will often be written in the form $\lambda=(\lambda_1, \dots, \lambda_t)$, where $t\geq\ell(\lambda)$; i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers $i,j\in\{1,\dots,\ell(\lambda)+1\}$ such that (1) $\lambda_i-1\geq \lambda_{i+1}$; (2) $\lambda_{j-1}\geq \lambda_j+1$; (3) $\lambda_i=\lambda_j+\delta$, where $\delta\geq2$. We will say that the partition $\eta={(\lambda_1, \dots, \lambda_i-1, \dots, \lambda_j+1, \dots, \lambda_n)}$ is obtained from a partition $\lambda=(\lambda_1, \dots, \lambda_i, \dots, \lambda_j, \dots, \lambda_n)$ by an elementary transformation of the first type. Let $\lambda_i-1\geq \lambda_{i+1}$, where $i\leq \ell(\lambda)$. A transformation that replaces $\lambda$ by $\eta=(\lambda_1, \dots, \lambda_{i-1}, \lambda_i-1, \lambda_{i+1}, \dots)$ will be called an elementary transformation of the second type. The authors showed earlier that a partition $\mu$ dominates a partition $\lambda$ if and only if $\lambda$ can be obtained from $\mu$ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let $\lambda$ and $\mu$ be two arbitrary partitions such that $\mu$ dominates $\lambda$. This work aims to study the shortest sequences of elementary transformations from $\mu$ to $\lambda$. As a result, we have built an algorithm that finds all the shortest sequences of this type.
Keywords: integer partition, Ferrers diagram, integer partitions lattice, elementary transformation.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vitaly A. Baranskii, Tatiana A. Senchonok, “On sequences of elementary transformations in the integer partitions lattice”, Ural Math. J., 9:2 (2023), 36–45
Citation in format AMSBIB
\Bibitem{BarSen23}
\by Vitaly~A.~Baranskii, Tatiana~A.~Senchonok
\paper On sequences of elementary transformations in the integer partitions lattice
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 36--45
\mathnet{http://mi.mathnet.ru/umj202}
\crossref{https://doi.org/10.15826/umj.2023.2.003}
\elib{https://elibrary.ru/item.asp?id=59690644}
\edn{https://elibrary.ru/NOHIXO}
Linking options:
  • https://www.mathnet.ru/eng/umj202
  • https://www.mathnet.ru/eng/umj/v9/i2/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:45
    Full-text PDF :12
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024