Processing math: 100%
Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2015, Volume 1, Issue 1, Pages 20–29
DOI: https://doi.org/10.15826/umj.2015.1.002
(Mi umj2)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the best approximation of the differentiation operator

Vitalii V. Arestovab

a Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Full-text PDF (156 kB) Citations (7)
References:
Abstract: In this paper we give a solution of the problem of the best approximation in the uniform norm of the differentiation operator of order k by bounded linear operators in the class of functions with the property that the Fourier transforms of their derivatives of order n (t<k<n) are finite measures. We also determine the exact value of the best constant in the corresponding inequality for derivatives.
The paper was originally published in a hard accessible collection of articles Approximation of Functions by Polynomials and Splines (UNTs AN SSSR, Sverdlovsk, 1985), p. 3–14 (in Russian).
Keywords: Differentiation operator, Stechkin's problem, Kolmogorov inequality.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vitalii V. Arestov, “On the best approximation of the differentiation operator”, Ural Math. J., 1:1 (2015), 20–29
Citation in format AMSBIB
\Bibitem{Are15}
\by Vitalii~V.~Arestov
\paper On the best approximation of the differentiation operator
\jour Ural Math. J.
\yr 2015
\vol 1
\issue 1
\pages 20--29
\mathnet{http://mi.mathnet.ru/umj2}
\crossref{https://doi.org/10.15826/umj.2015.1.002}
\zmath{https://zbmath.org/?q=an:1396.41018}
\elib{https://elibrary.ru/item.asp?id=25613592}
Linking options:
  • https://www.mathnet.ru/eng/umj2
  • https://www.mathnet.ru/eng/umj/v1/i1/p20
  • This publication is cited in the following 7 articles:
    1. Vitalii V. Arestov, “Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of (p,q)-multipliers and their predual spaces”, Ural Math. J., 9:2 (2023), 4–27  mathnet  crossref
    2. V. V. Arestov, “Predual Spaces for the Space of (p, q)-Multipliers and Their Application in Stechkin's Problem on Approximation of Differentiation Operators”, Anal Math, 49:1 (2023), 43  crossref
    3. K. Yu. Osipenko, “Optimal recovery in weighted spaces with homogeneous weights”, Sb. Math., 213:3 (2022), 385–411  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. V. Arestov, R. R. Akopyan, “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 7–31  mathnet  crossref  elib
    5. V. Arestov, “Uniform Approximation of Differentiation Operators by Bounded Linear Operators in the Space Lr”, Anal Math, 46:3 (2020), 425  crossref
    6. V. V. Arestov, “O sopryazhennosti prostranstva multiplikatorov”, Tr. IMM UrO RAN, 25, no. 4, 2019, 5–14  mathnet  crossref  elib
    7. V. V. Arestov, “Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space L2”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S9–S30  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :115
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025