Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 1, Pages 187–200
DOI: https://doi.org/10.15826/umj.2023.1.017
(Mi umj199)
 

On one Zalcman problem for the mean value operator

Natalia P. Volchkovaa, Vitaliy V. Volchkovb

a Donetsk National Technical University
b Donetsk State University
References:
Abstract: Let $\mathcal{D}'(\mathbb{R}^n)$ and $\mathcal{E}'(\mathbb{R}^n)$ be the spaces of distributions and compactly supported distributions on $\mathbb{R}^n$, $n\geq 2$, respectively, let $\mathcal{E}'_{\natural}(\mathbb{R}^n)$ be the space of all radial (invariant under rotations of the space $\mathbb{R}^n$) distributions in $\mathcal{E}'(\mathbb{R}^n)$, let $\widetilde{T}$ be the spherical transform (Fourier–Bessel transform) of a distribution $T\in\mathcal{E}'_{\natural}(\mathbb{R}^n)$, and let $\mathcal{Z}_{+}(\widetilde{T})$ be the set of all zeros of an even entire function $\widetilde{T}$ lying in the half-plane $\mathrm{Re} \, z\geq 0$ and not belonging to the negative part of the imaginary axis. Let $\sigma_{r}$ be the surface delta function concentrated on the sphere $S_r=\{x\in\mathbb{R}^n: |x|=r\}$. The problem of L. Zalcman on reconstructing a distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ from known convolutions $f\ast \sigma_{r_1}$ and $f\ast \sigma_{r_2}$ is studied. This problem is correctly posed only under the condition $r_1/r_2\notin M_n$, where $M_n$ is the set of all possible ratios of positive zeros of the Bessel function $J_{n/2-1}$. The paper shows that if $r_1/r_2\notin M_n$, then an arbitrary distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ can be expanded into an unconditionally convergent series
$$ f=\sum\limits_{\lambda\in\mathcal{Z}_{+}( \widetilde{\Omega}_{r_1})}\,\,\, \sum\limits_{\mu\in\mathcal{Z}_+(\widetilde{\Omega}_{r_2})} \frac{4\lambda\mu}{(\lambda^2-\mu^2) \widetilde{\Omega}_{r_1}^{\,\,\,\displaystyle{'}}(\lambda)\widetilde{\Omega}_{r_2}^{\,\,\,\displaystyle{'}}(\mu)}\Big (P_{r_2} (\Delta) \big((f\ast\sigma_{r_2})\ast \Omega_{r_1}^{\lambda}\big) -P_{r_1} (\Delta) \big((f\ast\sigma_{r_1})\ast \Omega_{r_2}^{\mu}\big)\Big) $$
in the space $\mathcal{D}'(\mathbb{R}^n)$, where $\Delta$ is the Laplace operator in $\mathbb{R}^n$, $P_r$ is an explicitly given polynomial of degree $[(n+5)/4]$, and $\Omega_{r}$ and $\Omega_{r}^{\lambda}$ are explicitly constructed radial distributions supported in the ball $ |x|\leq r$. The proof uses the methods of harmonic analysis, as well as the theory of entire and special functions. By a similar technique, it is possible to obtain inversion formulas for other convolution operators with radial distributions.
Keywords: compactly supported distributions, Fourier–Bessel transform, two-radii theorem, inversion formulas.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Natalia P. Volchkova, Vitaliy V. Volchkov, “On one Zalcman problem for the mean value operator”, Ural Math. J., 9:1 (2023), 187–200
Citation in format AMSBIB
\Bibitem{VolVol23}
\by Natalia~P.~Volchkova, Vitaliy~V.~Volchkov
\paper On one Zalcman problem for the mean value operator
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 1
\pages 187--200
\mathnet{http://mi.mathnet.ru/umj199}
\crossref{https://doi.org/10.15826/umj.2023.1.017}
\elib{https://elibrary.ru/item.asp?id=54265317}
\edn{https://elibrary.ru/IYYMOX}
Linking options:
  • https://www.mathnet.ru/eng/umj199
  • https://www.mathnet.ru/eng/umj/v9/i1/p187
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024