Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 1, Pages 162–175
DOI: https://doi.org/10.15826/umj.2023.1.015
(Mi umj197)
 

An $M^{[X]}/G/1$ queue with optional service and working breakdown

B. Somasudaram, S. Karpagam, R. Lokesh, A. Kavin Sagana Mary

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
References:
Abstract: In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented.
Keywords: non-Markovian queue, second optional service, working breakdown.
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Somasudaram, S. Karpagam, R. Lokesh, A. Kavin Sagana Mary, “An $M^{[X]}/G/1$ queue with optional service and working breakdown”, Ural Math. J., 9:1 (2023), 162–175
Citation in format AMSBIB
\Bibitem{SomKarLok23}
\by B.~Somasudaram, S.~Karpagam, R.~Lokesh, A.~Kavin Sagana Mary
\paper An $M^{[X]}/G/1$ queue with optional service and working breakdown
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 1
\pages 162--175
\mathnet{http://mi.mathnet.ru/umj197}
\crossref{https://doi.org/10.15826/umj.2023.1.015}
\elib{https://elibrary.ru/item.asp?id=54265315}
\edn{https://elibrary.ru/FHUNGA}
Linking options:
  • https://www.mathnet.ru/eng/umj197
  • https://www.mathnet.ru/eng/umj/v9/i1/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :31
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024