Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 1, Pages 147–152
DOI: https://doi.org/10.15826/umj.2023.1.013
(Mi umj195)
 

Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side

Alexander N. Sesekin, Anna D. Kandrina

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Keywords: Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.
Funding agency Grant number
Russian Science Foundation 22-21-00714
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander N. Sesekin, Anna D. Kandrina, “Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side”, Ural Math. J., 9:1 (2023), 147–152
Citation in format AMSBIB
\Bibitem{SesKan23}
\by Alexander~N.~Sesekin, Anna~D.~Kandrina
\paper Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 1
\pages 147--152
\mathnet{http://mi.mathnet.ru/umj195}
\crossref{https://doi.org/10.15826/umj.2023.1.013}
\elib{https://elibrary.ru/item.asp?id=54265313}
\edn{https://elibrary.ru/ACNOIO}
Linking options:
  • https://www.mathnet.ru/eng/umj195
  • https://www.mathnet.ru/eng/umj/v9/i1/p147
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :25
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024