Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 1, Pages 64–77
DOI: https://doi.org/10.15826/umj.2023.1.005
(Mi umj187)
 

Ternary $\ast$-bands are globally determined

Indrani Dutta, Sukhendu Kar

Jadavpur University
References:
Abstract: A non-empty set $S$ together with the ternary operation denoted by juxtaposition is said to be ternary semigroup if it satisfies the associativity property $ab(cde)=a(bcd)e=(abc)de$ for all $a,b,c,d,e\in S$. The global set of a ternary semigroup $S$ is the set of all non empty subsets of $S$ and it is denoted by $P(S)$. If $S$ is a ternary semigroup then $P(S)$ is also a ternary semigroup with a naturally defined ternary multiplication. A natural question arises: "Do all properties of $S$ remain the same in $P(S)$?"
The global determinism problem is a part of this question. A class $K$ of ternary semigroups is said to be globally determined if for any two ternary semigroups $S_1$ and $S_2$ of $K$, $P(S_1)\cong P(S_2)$ implies that $S_1\cong S_2$. So it is interesting to find the class of ternary semigroups which are globally determined. Here we will study the global determinism of ternary $\ast$-band.
Keywords: rectangular ternary band, involution ternary semigroup, involution ternary band, ternary $\ast$-band, ternary projection.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Indrani Dutta, Sukhendu Kar, “Ternary $\ast$-bands are globally determined”, Ural Math. J., 9:1 (2023), 64–77
Citation in format AMSBIB
\Bibitem{DutKar23}
\by Indrani~Dutta, Sukhendu~Kar
\paper Ternary $\ast$-bands are globally determined
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 1
\pages 64--77
\mathnet{http://mi.mathnet.ru/umj187}
\crossref{https://doi.org/10.15826/umj.2023.1.005}
\elib{https://elibrary.ru/item.asp?id=54265305}
\edn{https://elibrary.ru/RNMLUY}
Linking options:
  • https://www.mathnet.ru/eng/umj187
  • https://www.mathnet.ru/eng/umj/v9/i1/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:48
    Full-text PDF :22
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024