Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 153–161
DOI: https://doi.org/10.15826/umj.2022.2.013
(Mi umj180)
 

A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function

Robert Reynolds, Allan Stauffer

York University
References:
Abstract: With a possible connection to integrals used in General Relativity, we used our contour integral method to write a closed form solution for a quadruple integral involving exponential functions and logarithm of quotient radicals. Almost all Hurwitz–Lerch Zeta functions have an asymmetrical zero-distribution. All the results in this work are new.
Keywords: quadruple integral, Hhurwitz-Lerch Zeta function, Catalan's constant, Cauchy integral, Glaisher's constant.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) 504070
This work was supported by The Natural Sciences and Engineering Research Council of Canada (NSERC), Grant No. 504070
Bibliographic databases:
Document Type: Article
Language: English
Citation: Robert Reynolds, Allan Stauffer, “A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function”, Ural Math. J., 8:2 (2022), 153–161
Citation in format AMSBIB
\Bibitem{ReySta22}
\by Robert~Reynolds, Allan~Stauffer
\paper A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 153--161
\mathnet{http://mi.mathnet.ru/umj180}
\crossref{https://doi.org/10.15826/umj.2022.2.013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527699}
\elib{https://elibrary.ru/item.asp?id=50043150}
\edn{https://elibrary.ru/QHECNP}
Linking options:
  • https://www.mathnet.ru/eng/umj180
  • https://www.mathnet.ru/eng/umj/v8/i2/p153
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :33
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024