Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 94–114
DOI: https://doi.org/10.15826/umj.2022.2.008
(Mi umj175)
 

On local irregularity of the vertex coloring of the corona product of a tree graph

Arika Indah Kristiana, M. Hidayat, Robiatul Adawiyah, D. Dafik, Susi Setiawani, Ridho Alfarisi

University of Jember
References:
Abstract: Let $G=(V,E)$ be a graph with a vertex set $V$ and an edge set $E$. The graph $G$ is said to be with a local irregular vertex coloring if there is a function $f$ called a local irregularity vertex coloring with the properties: (i) $l:(V(G)) \to \{ 1,2,...,k \} $ as a vertex irregular $k$-labeling and $w:V(G)\to N,$ for every $uv \in E(G),$ ${w(u)\neq w(v)}$ where $w(u)=\sum_{v\in N(u)}l(i)$ and (ii) $\mathrm{opt}(l)=\min\{ \max \{ l_{i}: l_{i} \text{ is a vertex irregular labeling}\}\}$. The chromatic number of the local irregularity vertex coloring of $G$ denoted by $\chi_{lis}(G)$, is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular vertex coloring of $P_m\bigodot G$ when $G$ is a family of tree graphs, centipede $C_n$, double star graph $(S_{2,n})$, Weed graph $(S_{3,n})$, and $E$ graph $(E_{3,n})$.
Keywords: local irregularity, corona product, tree graph family.
Funding agency Grant number
University of Jember
We gratefully acknowledge the support from University of Jember
Bibliographic databases:
Document Type: Article
Language: English
Citation: Arika Indah Kristiana, M. Hidayat, Robiatul Adawiyah, D. Dafik, Susi Setiawani, Ridho Alfarisi, “On local irregularity of the vertex coloring of the corona product of a tree graph”, Ural Math. J., 8:2 (2022), 94–114
Citation in format AMSBIB
\Bibitem{KriHidAda22}
\by Arika~Indah~Kristiana, M.~Hidayat, Robiatul~Adawiyah, D.~Dafik, Susi~Setiawani, Ridho~Alfarisi
\paper On local irregularity of the vertex coloring of the corona product of a tree graph
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 94--114
\mathnet{http://mi.mathnet.ru/umj175}
\crossref{https://doi.org/10.15826/umj.2022.2.008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527694}
\elib{https://elibrary.ru/item.asp?id=50043145}
\edn{https://elibrary.ru/IYKIRL}
Linking options:
  • https://www.mathnet.ru/eng/umj175
  • https://www.mathnet.ru/eng/umj/v8/i2/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024