Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 59–70
DOI: https://doi.org/10.15826/umj.2022.2.005
(Mi umj172)
 

Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion

Abbes Benchaabane

Univ. 8 May 1945 Guelma
References:
Abstract: In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild solution by means of the Banach fixed point principle. At the end we provide a practical example in order to illustrate the viability of our result.
Keywords: approximate controllability, fixed point theorem, Rosenblatt process, mild solution stochastic impulsive systems.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Abbes Benchaabane, “Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion”, Ural Math. J., 8:2 (2022), 59–70
Citation in format AMSBIB
\Bibitem{Ben22}
\by Abbes~Benchaabane
\paper Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 59--70
\mathnet{http://mi.mathnet.ru/umj172}
\crossref{https://doi.org/10.15826/umj.2022.2.005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527691}
\elib{https://elibrary.ru/item.asp?id=50043142}
\edn{https://elibrary.ru/LNWFZX}
Linking options:
  • https://www.mathnet.ru/eng/umj172
  • https://www.mathnet.ru/eng/umj/v8/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:61
    Full-text PDF :49
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024