Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 2, Pages 27–45
DOI: https://doi.org/10.15826/umj.2022.2.003
(Mi umj170)
 

This article is cited in 2 scientific papers (total in 2 papers)

On one inequality of different metrics for trigonometric polynomials

Vitalii V. Arestovab, Marina V. Deikalovaab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Full-text PDF (268 kB) Citations (2)
References:
Abstract: We study the sharp inequality between the uniform norm and $L^p(0,\pi/2)$-norm of polynomials in the system $\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty$ of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order $n$ of polynomials as $n\to\infty$ and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.
Keywords: trigonometric cosine polynomial in odd harmonics, Nikol'skii different metrics inequality.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vitalii V. Arestov, Marina V. Deikalova, “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45
Citation in format AMSBIB
\Bibitem{AreDei22}
\by Vitalii~V.~Arestov, Marina~V.~Deikalova
\paper On one inequality of different metrics for trigonometric polynomials
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 2
\pages 27--45
\mathnet{http://mi.mathnet.ru/umj170}
\crossref{https://doi.org/10.15826/umj.2022.2.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527689}
\elib{https://elibrary.ru/item.asp?id=50043140}
\edn{https://elibrary.ru/CUWFZK}
Linking options:
  • https://www.mathnet.ru/eng/umj170
  • https://www.mathnet.ru/eng/umj/v8/i2/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :64
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024