Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 1, Pages 64–75
DOI: https://doi.org/10.15826/umj.2022.1.007
(Mi umj162)
 

On double signal number of a graph

X. Lenin Xavioura, S. Ancy Maryb

a Nesamony Memorial Christian College
b St. John’s College of Arts and Science
References:
Abstract: A set $S$ of vertices in a connected graph ${G=(V,E)}$ is called a signal set if every vertex not in $S$ lies on a signal path between two vertices from $S$. A set $S$ is called a double signal set of $G$ if $S$ if for each pair of vertices $x,y \in G$ there exist $u,v \in S$ such that $x,y \in L[u,v]$. The double signal number $\mathrm{dsn}\,(G)$ of $G$ is the minimum cardinality of a double signal set. Any double signal set of cardinality $\mathrm{dsn}\,(G)$ is called $\mathrm{dsn}$-set of $G$. In this paper we introduce and initiate some properties on double signal number of a graph. We have also given relation between geodetic number, signal number and double signal number for some classes of graphs.
Keywords: signal set, geodetic set, double signal set, double signal number.
Bibliographic databases:
Document Type: Article
Language: English
Citation: X. Lenin Xaviour, S. Ancy Mary, “On double signal number of a graph”, Ural Math. J., 8:1 (2022), 64–75
Citation in format AMSBIB
\Bibitem{LenAnc22}
\by X.~Lenin Xaviour, S.~Ancy Mary
\paper On double signal number of a graph
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 1
\pages 64--75
\mathnet{http://mi.mathnet.ru/umj162}
\crossref{https://doi.org/10.15826/umj.2022.1.007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460028}
\elib{https://elibrary.ru/item.asp?id=49240245}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135195060}
Linking options:
  • https://www.mathnet.ru/eng/umj162
  • https://www.mathnet.ru/eng/umj/v8/i1/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :28
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024