Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 1, Pages 23–33
DOI: https://doi.org/10.15826/umj.2022.1.003
(Mi umj158)
 

Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids

Dinesan Deepthya, Joseph Varghese Kureetharab

a GITAM University
b CHRIST (Deemed To Be University)
References:
Abstract: The induced $nK_2$ decomposition of infinite square grids and hexagonal grids are described here. We use the multi-level distance edge labeling as an effective technique in the decomposition of square grids. If the edges are adjacent, then their color difference is at least $2$ and if they are separated by exactly a single edge, then their colors must be distinct. Only non-negative integers are used for labeling. The proposed partitioning technique per the edge labels to get the induced $nK_2$ decomposition of the ladder graph is the square grid and the hexagonal grid.
Keywords: distance labelling, channel assignment, $L(h,k)$-colouring, rectangular grid, hexagonal grid.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dinesan Deepthy, Joseph Varghese Kureethara, “Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids”, Ural Math. J., 8:1 (2022), 23–33
Citation in format AMSBIB
\Bibitem{DeeKur22}
\by Dinesan~Deepthy, Joseph Varghese~Kureethara
\paper Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 1
\pages 23--33
\mathnet{http://mi.mathnet.ru/umj158}
\crossref{https://doi.org/10.15826/umj.2022.1.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460024}
\elib{https://elibrary.ru/item.asp?id=49240241}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135189713}
Linking options:
  • https://www.mathnet.ru/eng/umj158
  • https://www.mathnet.ru/eng/umj/v8/i1/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :25
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024