Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2022, Volume 8, Issue 1, Pages 13–22
DOI: https://doi.org/10.15826/umj.2022.1.002
(Mi umj157)
 

On $A^{\mathcal{I^{K}}}$–summability

Chiranjib Choudhury, Shyamal Debnath

Tripura University
References:
Abstract: In this paper, we introduce and investigate the concept of $A^{\mathcal{I^{K}}}$-summability as an extension of $A^{\mathcal{I^{*}}}$-summability which was recently (2021) introduced by O.H.H. Edely, where $A=(a_{nk})_{n,k=1}^{\infty}$ is a non-negative regular matrix and $\mathcal{I}$ and $\mathcal{K}$ represent two non-trivial admissible ideals in $\mathbb{N}$. We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that $A^{\mathcal{K}}$-summability always implies $A^{\mathcal{I^{K}}}$-summability whereas $A^{\mathcal{I}}$-summability not necessarily implies $A^{\mathcal{I^{K}}}$-summability. Finally, we give a condition namely $AP(\mathcal{I},\mathcal{K})$ (which is a natural generalization of the condition $AP$) under which $A^{\mathcal{I}}$-summability implies $A^{\mathcal{I^{K}}}$-summability.
Keywords: ideal, filter, $\mathcal{I}$-convergence, $\mathcal{I^{K}}$-convergence, $A^{\mathcal{I}}$-summa-bility, $A^{\mathcal{I^{K}}}$-summability.
Funding agency Grant number
University Grants Commission 16-6(DEC. 2018)/2019(NET/CSIR)
The first author is grateful to the University Grants Commission, India for their fellowships funding under the UGC-JRF scheme (F. No. 16-6(DEC. 2018)/2019(NET/CSIR)) during the preparation of this paper.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Chiranjib Choudhury, Shyamal Debnath, “On $A^{\mathcal{I^{K}}}$–summability”, Ural Math. J., 8:1 (2022), 13–22
Citation in format AMSBIB
\Bibitem{ChoDeb22}
\by Chiranjib~Choudhury, Shyamal~Debnath
\paper On $A^{\mathcal{I^{K}}}$--summability
\jour Ural Math. J.
\yr 2022
\vol 8
\issue 1
\pages 13--22
\mathnet{http://mi.mathnet.ru/umj157}
\crossref{https://doi.org/10.15826/umj.2022.1.002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460023}
\elib{https://elibrary.ru/item.asp?id=49240240}
Linking options:
  • https://www.mathnet.ru/eng/umj157
  • https://www.mathnet.ru/eng/umj/v8/i1/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :36
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024