Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2021, Volume 7, Issue 2, Pages 86–93
DOI: https://doi.org/10.15826/umj.2021.2.006
(Mi umj151)
 

Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$

S. Rajkumar, M. Nalliah, Madhu Venkataraman

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
References:
Abstract: Let $G=(V, E)$ be a simple graph and $H$ be a subgraph of $G$. Then $G$ admits an $H$-covering, if every edge in $E(G)$ belongs to at least one subgraph of $G$ that is isomorphic to $H$. An $(a,d)-H$-antimagic total labeling of $G$ is bijection $f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}$ such that for all subgraphs $ H'$ of $G$ isomorphic to $H$, the $H'$ weights $w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)$ constitute an arithmetic progression $\{a, a + d, a + 2d, \dots , a + (n- 1)d\}$, where $a$ and $d$ are positive integers and $n$ is the number of subgraphs of $G$ isomorphic to $H$. The labeling $f$ is called a super $(a, d)-H$-antimagic total labeling if $f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.$ In [5], David Laurence and Kathiresan posed a problem that characterizes the super $ (a, 1)-P_{3}$-antimagic total labeling of Star $S_{n},$ where $n=6,7,8,9.$ In this paper, we completely solved this problem.
Keywords: $H$-covering, super $(a,d)-H$-antimagic, star.
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Rajkumar, M. Nalliah, Madhu Venkataraman, “Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$”, Ural Math. J., 7:2 (2021), 86–93
Citation in format AMSBIB
\Bibitem{RajNalVen21}
\by S.~Rajkumar, M.~Nalliah, Madhu~Venkataraman
\paper Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
\jour Ural Math. J.
\yr 2021
\vol 7
\issue 2
\pages 86--93
\mathnet{http://mi.mathnet.ru/umj151}
\crossref{https://doi.org/10.15826/umj.2021.2.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4358915}
\elib{https://elibrary.ru/item.asp?id=47556643 }
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124958262}
Linking options:
  • https://www.mathnet.ru/eng/umj151
  • https://www.mathnet.ru/eng/umj/v7/i2/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :45
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024