Abstract:
Let En be the ring of Eisenstein integers modulo n. We denote by G(En) and GEn, the unit graph and the unitary Cayley graph of En, respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each n>1, the graphs G(En) and GEn
are Hamiltonian.
Keywords:
unit graph, unitary Cayley graph, Eisenstein integers, Hamiltonian graph.
Bibliographic databases:
Document Type:
Article
Language: English
Citation:
Reza Jahani-Nezhad, Ali Bahrami, “Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo n”, Ural Math. J., 7:2 (2021), 43–50
\Bibitem{JahBah21}
\by Reza~Jahani-Nezhad, Ali~Bahrami
\paper Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
\jour Ural Math. J.
\yr 2021
\vol 7
\issue 2
\pages 43--50
\mathnet{http://mi.mathnet.ru/umj148}
\crossref{https://doi.org/10.15826/umj.2021.2.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4358912}
\elib{https://elibrary.ru/item.asp?id=47556640}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124339699}
Linking options:
https://www.mathnet.ru/eng/umj148
https://www.mathnet.ru/eng/umj/v7/i2/p43
This publication is cited in the following 1 articles:
S. Madhumitha, Sudev Naduvath, “Graphs Defined on Rings: A Review”, Mathematics, 11:17 (2023), 3643