Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2021, Volume 7, Issue 1, Pages 96–101
DOI: https://doi.org/10.15826/umj.2021.1.008
(Mi umj140)
 

This article is cited in 1 scientific paper (total in 1 paper)

Definite integral of logarithmic functions and powers in terms of the lerch function

Robert Reynolds, Allan Stauffer

York University
Full-text PDF (109 kB) Citations (1)
References:
Abstract: A family of generalized definite logarithmic integrals given by
$$ \int_{0}^{1}\frac{\left(x^{ i m} (\log (a)+i \log (x))^k+x^{-i m} (\log (a)-i \log (x))^k\right)}{(x+1)^2}dx $$
built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the general method as given in [5] to derive this integral. We then give a number of examples that can be derived from the general integral in terms of well known functions.
Keywords: entries of Gradshteyn and Ryzhik, Lerch function, Knuth's Series.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) 504070
This research is supported by NSERC Canada under Grant 504070.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Robert Reynolds, Allan Stauffer, “Definite integral of logarithmic functions and powers in terms of the lerch function”, Ural Math. J., 7:1 (2021), 96–101
Citation in format AMSBIB
\Bibitem{ReySta21}
\by Robert~Reynolds, Allan~Stauffer
\paper Definite integral of logarithmic functions and powers in terms of the lerch function
\jour Ural Math. J.
\yr 2021
\vol 7
\issue 1
\pages 96--101
\mathnet{http://mi.mathnet.ru/umj140}
\crossref{https://doi.org/10.15826/umj.2021.1.008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4301216}
\zmath{https://zbmath.org/?q=an:07407685}
\elib{https://elibrary.ru/item.asp?id=46381217}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85112013793}
Linking options:
  • https://www.mathnet.ru/eng/umj140
  • https://www.mathnet.ru/eng/umj/v7/i1/p96
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025