Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2021, Volume 7, Issue 1, Pages 87–95
DOI: https://doi.org/10.15826/umj.2021.1.007
(Mi umj139)
 

On Zygmund-type inequalities concerning polar derivative of polynomials

Nisar Ahmad Rathera, Suhail Gulzarb, Aijaz Bhata

a University of Kashmir
b Government College of Engineering and Textile Technology
References:
Abstract: Let $P(z)$ be a polynomial of degree $n$, then concerning the estimate for maximum of $|P'(z)|$ on the unit circle, it was proved by S. Bernstein that $\| P'\|_{\infty}\leq n\| P\|_{\infty}$. Later, Zygmund obtained an $L_p$-norm extension of this inequality. The polar derivative $D_{\alpha}[P](z)$ of $P(z)$, with respect to a point $\alpha \in \mathbb{C}$, generalizes the ordinary derivative in the sense that $\lim_{\alpha\to\infty} D_{\alpha}[P](z)/{\alpha} = P'(z).$ Recently, for polynomials of the form $P(z) = a_0 + \sum_{j=\mu}^n a_jz^j,$ $1\leq\mu\leq n$ and having no zero in $|z| < k$ where $k > 1$, the following Zygmund-type inequality for polar derivative of $P(z)$ was obtained:
$$\|D_{\alpha}[P]\|_p\leq n \Big(\dfrac{|\alpha|+k^{\mu}}{\|k^{\mu}+z\|_p}\Big)\|P\|_p, \quad \text{where}\quad |\alpha|\geq1,\quad p>0.$$
In this paper, we obtained a refinement of this inequality by involving minimum modulus of $|P(z)|$ on $|z| = k$, which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros as well.
Keywords: $L^{p}$-inequalities, polar derivative, polynomials.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nisar Ahmad Rather, Suhail Gulzar, Aijaz Bhat, “On Zygmund-type inequalities concerning polar derivative of polynomials”, Ural Math. J., 7:1 (2021), 87–95
Citation in format AMSBIB
\Bibitem{RatGulBha21}
\by Nisar~Ahmad~Rather, Suhail~Gulzar, Aijaz~Bhat
\paper On Zygmund-type inequalities concerning polar derivative of polynomials
\jour Ural Math. J.
\yr 2021
\vol 7
\issue 1
\pages 87--95
\mathnet{http://mi.mathnet.ru/umj139}
\crossref{https://doi.org/10.15826/umj.2021.1.007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4301215}
\zmath{https://zbmath.org/?q=an:07407684}
\elib{https://elibrary.ru/item.asp?id=46381216}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111979254}
Linking options:
  • https://www.mathnet.ru/eng/umj139
  • https://www.mathnet.ru/eng/umj/v7/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :46
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024