Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 2, Pages 108–116
DOI: https://doi.org/10.15826/umj.2020.2.011
(Mi umj131)
 

This article is cited in 13 scientific papers (total in 13 papers)

The local density and the local weak density in the space of permutation degree and in Hattori space

Tursun K. Yuldashev, Farkhod G. Mukhamadiev

National University of Uzbekistan named after M. Ulugbek, Tashkent
References:
Abstract: In this paper, the local density $(l d)$ and the local weak density $(l w d)$ in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree $S P^{n} $ and the subfunctor of permutation degree $S P_{G}^{n} $, $P$ is the cardinal number of topological spaces. Let $X$ be an infinite $T_{1} $-space. We prove that the following propositions hold.
  • Let $Y^{n} \subset X^{n} $; (A) if $d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)$, then $d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)$; (B) if $l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)$, then $l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)$.
  • Let $Y\subset X$; (A) if $l d \,(Y)=l d \,(X)$, then $l d\, \left(S P^{n} Y\right)$ $=l d\, \left(S P^{n} X\right)$; (B) if $w d \,(Y)=w d \,(X)$, then $w d\, \left(S P^{n} Y\right)$ $=w d\, \left(S P^{n} X\right)$.
  • Let $n$ be a positive integer, and let $G$ be a subgroup of the permutation group $S_{n} $. If $X$ is a locally compact $T_{1}$-space, then $S P^{n} X, \, S P_{G}^{n} X$, and $\exp _{n} X$ are $k$-spaces.
  • Let $n$ be a positive integer, and let $G$ be a subgroup of the permutation group $S_{n} $. If $X$ is an infinite $T_{1}$-space, then $n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)$.
We also have studied that the functors $SP^{n},$ $SP_{G}^{n} ,$ and $\exp _{n} $ preserve any $k$-space. The functors $SP^{2} $ and $SP_{G}^{3} $ do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite $T_{1}$-space $X$ coincides with the densities of the spaces $X^{n}$, $\,S P^{n} X$, and $\exp _{n} X$. It is also shown that the weak density of an infinite $T_{1}$-space $X$ coincides with the weak densities of the spaces $X^{n}$, $\,S P^{n} X$, and $\exp _{n} X$.
Keywords: local density, local weak density, space of permutation degree, Hattori space, covariant functors.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Tursun K. Yuldashev, Farkhod G. Mukhamadiev, “The local density and the local weak density in the space of permutation degree and in Hattori space”, Ural Math. J., 6:2 (2020), 108–116
Citation in format AMSBIB
\Bibitem{YulMuk20}
\by Tursun~K.~Yuldashev, Farkhod~G.~Mukhamadiev
\paper The local density and the local weak density in the space of permutation degree and in Hattori space
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 108--116
\mathnet{http://mi.mathnet.ru/umj131}
\crossref{https://doi.org/10.15826/umj.2020.2.011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4194019}
\elib{https://elibrary.ru/item.asp?id=44611155}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099560625}
Linking options:
  • https://www.mathnet.ru/eng/umj131
  • https://www.mathnet.ru/eng/umj/v6/i2/p108
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024