Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 2, Pages 38–43
DOI: https://doi.org/10.15826/umj.2020.2.004
(Mi umj124)
 

Open packing number for some classes of perfect graphs

K. Raja Chandrasekara, S. Saravanakumarb

a Amrita College of Engineering and Technology, Amritagiri, Erachakulam Post, Nagercoil-629902, Tamil Nadu, India
b Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil-626126, Tamil Nadu, India
References:
Abstract: Let $G$ be a graph with the vertex set $V(G)$. A subset $S$ of $V(G)$ is an open packing set of $G$ if every pair of vertices in $S$ has no common neighbor in $G.$ The maximum cardinality of an open packing set of $G$ is the open packing number of $G$ and it is denoted by $\rho^o(G)$. In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, $\{P_4, C_4\}$-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.
Keywords: open packing number, 2-packing number, perfect graphs, trestled graphs.
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Raja Chandrasekar, S. Saravanakumar, “Open packing number for some classes of perfect graphs”, Ural Math. J., 6:2 (2020), 38–43
Citation in format AMSBIB
\Bibitem{ChaSar20}
\by K.~Raja~Chandrasekar, S.~Saravanakumar
\paper Open packing number for some classes of perfect graphs
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 38--43
\mathnet{http://mi.mathnet.ru/umj124}
\crossref{https://doi.org/10.15826/umj.2020.2.004}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4194012}
\elib{https://elibrary.ru/item.asp?id=44611148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099601763}
Linking options:
  • https://www.mathnet.ru/eng/umj124
  • https://www.mathnet.ru/eng/umj/v6/i2/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :31
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024