Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 2, Pages 15–24
DOI: https://doi.org/10.15826/umj.2020.2.002
(Mi umj122)
 

This article is cited in 1 scientific paper (total in 1 paper)

Hahn's problem with respect to some perturbations of the raising operator $(X-c)$

Baghdadi Aloui, Jihad Souissi

Université de Gabès
Full-text PDF (156 kB) Citations (1)
References:
Abstract: In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.
Keywords: orthogonal polynomials, linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Baghdadi Aloui, Jihad Souissi, “Hahn's problem with respect to some perturbations of the raising operator $(X-c)$”, Ural Math. J., 6:2 (2020), 15–24
Citation in format AMSBIB
\Bibitem{AloSou20}
\by Baghdadi~Aloui, Jihad~Souissi
\paper Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 15--24
\mathnet{http://mi.mathnet.ru/umj122}
\crossref{https://doi.org/10.15826/umj.2020.2.002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4194010}
\elib{https://elibrary.ru/item.asp?id=44611146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099543118}
Linking options:
  • https://www.mathnet.ru/eng/umj122
  • https://www.mathnet.ru/eng/umj/v6/i2/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :65
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024