Abstract:
This paper deals with the existence and multiplicity of
solutions for a class of quasilinear problems involving p(x)p(x)-Laplace type equation, namely
{−div(a(|∇u|p(x))|∇u|p(x)−2∇u)=λf(x,u)inΩ,n⋅a(|∇u|p(x))|∇u|p(x)−2∇u+b(x)|u|p(x)−2u=g(x,u)on∂Ω.
Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.
Keywords:p(x)-Laplacian, Mountain pass theorem, Multiple solutions, Critical point theory.
\Bibitem{BelOurTso20}
\by Hassan Belaouidel, Anass Ourraoui, Najib Tsouli
\paper General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 30--41
\mathnet{http://mi.mathnet.ru/umj109}
\crossref{https://doi.org/10.15826/umj.2020.1.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4128758}
\zmath{https://zbmath.org/?q=an:1448.35255}
\elib{https://elibrary.ru/item.asp?id=43793622}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088994872}
Linking options:
https://www.mathnet.ru/eng/umj109
https://www.mathnet.ru/eng/umj/v6/i1/p30
This publication is cited in the following 2 articles:
Adnane Belakhdar, Hassan Belaouidel, Mohammed Filali, Najib Tsouli, “The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel”, bspm, 41 (2022), 1
Mustapha Ait Hammou, “Weak solutions for fractionalp(x,·)-Laplacian Dirichlet problems with weight”, Analysis, 42:2 (2022), 121