Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2020, Volume 6, Issue 1, Pages 30–41
DOI: https://doi.org/10.15826/umj.2020.1.003
(Mi umj109)
 

This article is cited in 2 scientific papers (total in 2 papers)

General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition

Hassan Belaouidel, Anass Ourraoui, Najib Tsouli

Department of Mathematics and Computer Science, Faculty of Sciences, University Mohamed I
Full-text PDF (196 kB) Citations (2)
References:
Abstract: This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving $p(x)$-Laplace type equation, namely
\begin{equation*}\label{E11} \left\{\begin{array}{lll} -\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\ n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) &\text{on}&\partial\Omega. \end{array}\right. \end{equation*}
Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.
Keywords: $p(x)$-Laplacian, Mountain pass theorem, Multiple solutions, Critical point theory.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Hassan Belaouidel, Anass Ourraoui, Najib Tsouli, “General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition”, Ural Math. J., 6:1 (2020), 30–41
Citation in format AMSBIB
\Bibitem{BelOurTso20}
\by Hassan Belaouidel, Anass Ourraoui, Najib Tsouli
\paper General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 30--41
\mathnet{http://mi.mathnet.ru/umj109}
\crossref{https://doi.org/10.15826/umj.2020.1.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR4128758}
\zmath{https://zbmath.org/?q=an:1448.35255}
\elib{https://elibrary.ru/item.asp?id=43793622}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088994872}
Linking options:
  • https://www.mathnet.ru/eng/umj109
  • https://www.mathnet.ru/eng/umj/v6/i1/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :41
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024