Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2010, Volume 180, Number 1, Pages 89–96
DOI: https://doi.org/10.3367/UFNr.0180.201001e.0089
(Mi ufn877)
 

This article is cited in 9 scientific papers (total in 9 papers)

METHODOLOGICAL NOTES

On the Bose – Einstein condensate partition function for an ideal gas

E. D. Trifonova, Serge N. Zagoulaevb

a Herzen State Pedagogical University of Russia
b Department of Theoretical Physics, V. A. Fock Institute of Physics, St. Petersburg State University
References:
Abstract: Recursive approaches determining the canonical ideal Bose gas partition function are reviewed that enable the Bose – Einstein condensate occupation probability to be calculated for a finite number of particles ensemble where, the thermodynamic limit approximation fails. In addition to the earlier known method recursive in the number of particles, an iteration procedure on the number of quantum states is proposed. The efficiency of both methods is demonstrated for an ideal Bose gas in a three-dimensional isotropic harmonic trap.
Received: May 29, 2009
Revised: July 9, 2009
English version:
Physics–Uspekhi, 2010, Volume 53, Issue 1, Pages 83–90
DOI: https://doi.org/10.3367/UFNe.0180.201001e.0089
Bibliographic databases:
Document Type: Article
PACS: 05.30.Jp, 67.85.-d
Language: Russian
Citation: E. D. Trifonov, Serge N. Zagoulaev, “On the Bose – Einstein condensate partition function for an ideal gas”, UFN, 180:1 (2010), 89–96; Phys. Usp., 53:1 (2010), 83–90
Citation in format AMSBIB
\Bibitem{TriZag10}
\by E.~D.~Trifonov, Serge~N.~Zagoulaev
\paper On the Bose -- Einstein condensate partition function for an ideal gas
\jour UFN
\yr 2010
\vol 180
\issue 1
\pages 89--96
\mathnet{http://mi.mathnet.ru/ufn877}
\crossref{https://doi.org/10.3367/UFNr.0180.201001e.0089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010PhyU...53...83T}
\transl
\jour Phys. Usp.
\yr 2010
\vol 53
\issue 1
\pages 83--90
\crossref{https://doi.org/10.3367/UFNe.0180.201001e.0089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278717900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954799449}
Linking options:
  • https://www.mathnet.ru/eng/ufn877
  • https://www.mathnet.ru/eng/ufn/v180/i1/p89
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :127
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024