Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 1985, Volume 147, Number 4, Pages 747–765
DOI: https://doi.org/10.3367/UFNr.0147.198512c.0747
(Mi ufn8409)
 

This article is cited in 23 scientific papers (total in 23 papers)

METHODOLOGICAL NOTES

The dimer problem and the Kirchhoff theorem

V. B. Priezzhev

Joint Institute for Nuclear Research, Dubna, Moscow region
Abstract: Application of the Kirchhoff theorem to lattice statistics leads to solution of the two-dimensional dimer problem, earlier obtained by the Pfaffian method. It is shown that the relation between the theory of network of linear resistors and the dimer problem is particularly useful in the threedimensional case. A number of dimer configurations on a decorated diamond lattice is found by calculating spanning trees on the corresponding lattice. The Kirchhoff theorem is proved in the spirit of the combinatorical solution of the Ising model.
English version:
Physics–Uspekhi, 1985, Volume 28, Issue 12, Pages 1125–1135
DOI: https://doi.org/10.1070/PU1985v028n12ABEH003987
Document Type: Article
UDC: 531.19
PACS: 05.50.+q, 02.10.Yn, 02.10.Ox, 61.50.Ah
Language: Russian
Citation: V. B. Priezzhev, “The dimer problem and the Kirchhoff theorem”, UFN, 147:4 (1985), 747–765; Phys. Usp., 28:12 (1985), 1125–1135
Citation in format AMSBIB
\Bibitem{Pri85}
\by V.~B.~Priezzhev
\paper The dimer problem and the Kirchhoff theorem
\jour UFN
\yr 1985
\vol 147
\issue 4
\pages 747--765
\mathnet{http://mi.mathnet.ru/ufn8409}
\crossref{https://doi.org/10.3367/UFNr.0147.198512c.0747}
\transl
\jour Phys. Usp.
\yr 1985
\vol 28
\issue 12
\pages 1125--1135
\crossref{https://doi.org/10.1070/PU1985v028n12ABEH003987}
Linking options:
  • https://www.mathnet.ru/eng/ufn8409
  • https://www.mathnet.ru/eng/ufn/v147/i4/p747
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024