Abstract:
This review is devoted to the phenomena induced by negative ion processes in weakly ionized gases and plasmas. It briefly describes the electron attachment and detachment processes. The consideration focuses on the salient features of charged particle transport in electronegative gases. New types of instability and wave modes in plasmas with negative ions are discussed. Relevance of the negative-ion processes to modern technologies is indicated with emphasis on the ecological aspects and environmental applications.
Citation:
N. L. Aleksandrov, A. M. Napartovich, “Phenomena in gases and plasmas with negative ions”, UFN, 163:3 (1993), 1–26; Phys. Usp., 36:3 (1993), 107–128
This publication is cited in the following 37 articles:
Rajat Dhawan, Hitendra K. Malik, “Sheath formation mechanism in collisional electronegative warm plasma with two-temperature non-extensive distributed electrons and ionization”, Journal of Applied Physics, 133:4 (2023)
V. N. Ochkin, “Spectroscopy of small gas components of a nonequilibrium low-temperature plasma”, Phys. Usp., 65:10 (2022), 1071–1103
A. V. Bogatskaya, E. A. Volkova, A. M. Popov, “Unipolar terahertz pulse formation in a nonequilibrium plasma channel formed by an ultrashort uv laser pulse”, Phys. Rev. E, 104:2 (2021)
A V Bogatskaya, E A Volkova, A M Popov, “New method of unipolar THz pulse generation in photo-ionised xenon plasma”, Plasma Sources Sci. Technol., 30:8 (2021), 085001
V. G. Lukin, O. G. Khvostenko, “Desorption processes in the measurement of weak currents”, Phys. Usp., 63:5 (2020), 487–499
R. Kh. Amirov, A. V. Lankin, G. E. Norman, “Solvation suppression of ion recombination in gas discharge afterglow”, Phys. Rev. E, 97:3 (2018)
Nikolai M. Rubtsov, Springer Aerospace Technology, Key Factors of Combustion, 2017, 79
M Y Pustilnik, A V Ivlev, N Sadeghi, R Heidemann, S Mitich, H M Thomas, G E Morfill, “Optogalvanic control of instabilities in dusty plasma”, J. Phys.: Conf. Ser., 666 (2016), 012022
V. S. Sykhomlinov, A. S.-U. Mustafaev, “Evolution of a vortex in gas-discharge plasma with allowance for gas compressibility”, Tech. Phys., 61:9 (2016), 1328–1336
A V Bogatskaya, A M Popov, “E-beam sustained plasma as a medium for the amplification of electromagnetic radiation in the subterahertz frequency band”, J. Phys. D: Appl. Phys., 49:2 (2016), 025203
A. V. Bogatskaya, E. A. Volkova, A. M. Popov, I. V. Smetanin, “Propagation and amplification of microwave radiation in a plasma channel created in gas by a high-power femtosecond UV laser pulse”, Plasma Phys. Rep., 42:2 (2016), 113
A. V. Bogatskaya, A. M. Popov, E. A. Volkova, Springer Proceedings in Physics, 177, Photoptics 2014, 2016, 145
A. V. Bogatskaya, E. A. Volkova, A. M. Popov, “Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse”, Quantum Electron., 44:12 (2014), 1091–1098
A V Bogatskaya, E A Volkova, A M Popov, “On the possibility of a short subterahertz pulse amplification in a plasma channel created in air by intense laser radiation”, J. Phys. D: Appl. Phys., 47:18 (2014), 185202
R. Kh. Amirov, A. V. Lankin, G. E. Norman, “Recombination in nonideal ion gas discharge afterglow plasma”, J. Exp. Theor. Phys., 119:2 (2014), 341
A. V. Bogatskaya, E. A. Volkova, A. M. Popov, “Plasma channel produced by femtosecond laser pulses as a medium for amplifying electromagnetic radiation of the subterahertz frequency range”, Quantum Electron., 43:12 (2013), 1110–1117
A. V. Bogatskaya, A. M. Popov, “On the possibility of the amplification of subterahertz electromagnetic radiation in a plasma channel created by a high-intensity ultrashort laser pulse”, JETP Letters, 97:7 (2013), 388–392
M. Y. Pustylnik, A. V. Ivlev, N. Sadeghi, R. Heidemann, S. Mitic, H. M. Thomas, G. E. Morfill, “On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas”, Physics of Plasmas, 19:10 (2012)
A. V. Lankin, G. E. Norman, “Recombination in dense ion plasmas”, Dokl. Phys., 57:9 (2012), 344