Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2022, Volume 192, Number 10, Pages 1089–1109
DOI: https://doi.org/10.3367/UFNr.2021.08.039042
(Mi ufn7092)
 

This article is cited in 5 scientific papers (total in 5 papers)

REVIEWS OF TOPICAL PROBLEMS

Nonlinear dynamics and machine learning of recurrent spiking neural networks

O. V. Maslennikov, M. M. Pugavko, D. S. Shchapin, V. I. Nekorkin

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod
Full-text PDF (790 kB) Citations (5)
References:
Abstract: Major achievements in designing and analyzing recurrent spiking neural networks intended for modeling functional brain networks are reviewed. Key terms and definitions employed in machine learning are introduced. The main approaches to the development and exploration of spiking and rate neural networks trained to perform specific cognitive functions are presented. State-of-the-art neuromorphic hardware systems simulating information processing by the brain are described. Concepts of nonlinear dynamics are discussed, which enable identification of the mechanisms used by neural networks to perform target tasks.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0030-2021-0011
This study was supported by the RF Ministry of Science and Higher Education (project no. 00-30-2021-0011).
Received: June 1, 2021
Revised: August 13, 2021
Accepted: August 13, 2021
English version:
Physics–Uspekhi, 2022, Volume 65, Issue 10, Pages 1020–1038
DOI: https://doi.org/10.3367/UFNe.2021.08.039042
Bibliographic databases:
Document Type: Article
PACS: 07.05.Mh, 84.35.+i, 87.19.L-
Language: Russian
Citation: O. V. Maslennikov, M. M. Pugavko, D. S. Shchapin, V. I. Nekorkin, “Nonlinear dynamics and machine learning of recurrent spiking neural networks”, UFN, 192:10 (2022), 1089–1109; Phys. Usp., 65:10 (2022), 1020–1038
Citation in format AMSBIB
\Bibitem{MasPugShc22}
\by O.~V.~Maslennikov, M.~M.~Pugavko, D.~S.~Shchapin, V.~I.~Nekorkin
\paper Nonlinear dynamics and machine learning of recurrent spiking neural networks
\jour UFN
\yr 2022
\vol 192
\issue 10
\pages 1089--1109
\mathnet{http://mi.mathnet.ru/ufn7092}
\crossref{https://doi.org/10.3367/UFNr.2021.08.039042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022PhyU...65.1020M}
\transl
\jour Phys. Usp.
\yr 2022
\vol 65
\issue 10
\pages 1020--1038
\crossref{https://doi.org/10.3367/UFNe.2021.08.039042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001112536300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85182910380}
Linking options:
  • https://www.mathnet.ru/eng/ufn7092
  • https://www.mathnet.ru/eng/ufn/v192/i10/p1089
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :23
    References:21
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024