Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2020, Volume 190, Number 7, Pages 749–761
DOI: https://doi.org/10.3367/UFNr.2020.03.038743
(Mi ufn6748)
 

This article is cited in 17 scientific papers (total in 20 papers)

PHYSICS OF OUR DAYS

Photon entanglement for life-science imaging: rethinking the limits of the possible

A. M. Zheltikovabcde, M. O. Scullibfg

a International Laser Center, Lomonosov Moscow State University, Physics Department
b Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University
c Russian Quantum Center, Skolkovo, Moscow region
d Tupolev Kazan National Research Technical University
e National Research Centre "Kurchatov Institute", Moscow
f Princeton University
g Baylor University
References:
Abstract: Quantum entanglement is a powerful resource that revolutionizes information science, opens new horizons in communication technologies, and pushes the frontiers of sensing and imaging. Whether or not the methods of quantum entanglement can be extended to life-science imaging is far from clear. Live biological systems are eluding quantum-optical probes, proving, time and time again, too lossy, too noisy, too warm, and too wet to be meaningfully studied by quantum states of light. The central difficulty that puts the main roadblock on the path toward entanglement-enhanced nonlinear bioimaging is that the two-photon absorption (TPA) of entangled photons can exceed the TPA of uncorrelated photons only at the level of incident photon flux densities as low as one photon per entanglement area per entanglement time. This fundamental limitation has long been believed to rule out even a thinnest chance for a success of bioimaging with entangled photons. Here, we show that new approaches in nonlinear and quantum optics, combined with the latest achievements in biotechnologies, open the routes toward efficient photon-entanglement-based strategies in TPA microscopy that can help confront long-standing challenges in life-science imaging. Unleashing the full potential of this approach will require, however, high throughputs of virus-construct delivery, high expression efficiencies of genetically encodable fluorescent markers, high-brightness sources of entangled photons, as well as a thoughtful entanglement engineering in time, space, pulse, and polarization modes. We demonstrate that suitably tailored nonlinear optical fibers can deliver entangled photon pairs confined to entanglement volumes many orders of magnitude smaller than the entanglement volumes attainable through spontaneous parametric down-conversion. These ultracompact modes of entangled photons are shown to enable a radical enhancement of the TPA of entangled photons, opening new avenues for quantum entanglement in life-science imaging.
Funding agency Grant number
Russian Foundation for Basic Research 17-00-00212
19-02-00473
18-29-20031
18-52-00025
Фонд Уелча А-1801-20180324
Ministry of Science and Higher Education of the Russian Federation 14.Z50.31.0040
Russian Science Foundation 20-12-00088
This research was supported in part by the Russian Foundation for Basic Research (project no. 17-00-00212, 19-02-00473, 18-29-20031, and 18-52-00025) and Welch Foundation (Grant no. A-1801-20180324). Research into multioctave nonlinear optics is supported by Russian Science Foundation (project no. 20-12-00088).
Received: February 7, 2020
Accepted: March 25, 2020
English version:
Physics–Uspekhi, 2020, Volume 63, Issue 7, Pages 698–707
DOI: https://doi.org/10.3367/UFNe.2020.03.038743
Bibliographic databases:
Document Type: Article
PACS: 03.65.-w, 03.65.Ta, 03.65.Ud, 03.65.Yz, 03.67.-a, 32.80.Qk
Language: Russian
Citation: A. M. Zheltikov, M. O. Sculli, “Photon entanglement for life-science imaging: rethinking the limits of the possible”, UFN, 190:7 (2020), 749–761; Phys. Usp., 63:7 (2020), 698–707
Citation in format AMSBIB
\Bibitem{ZheScu20}
\by A.~M.~Zheltikov, M.~O.~Sculli
\paper Photon entanglement for life-science imaging: rethinking the limits of the possible
\jour UFN
\yr 2020
\vol 190
\issue 7
\pages 749--761
\mathnet{http://mi.mathnet.ru/ufn6748}
\crossref{https://doi.org/10.3367/UFNr.2020.03.038743}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020PhyU...63..698Z}
\elib{https://elibrary.ru/item.asp?id=45232312}
\transl
\jour Phys. Usp.
\yr 2020
\vol 63
\issue 7
\pages 698--707
\crossref{https://doi.org/10.3367/UFNe.2020.03.038743}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575189200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092450236}
Linking options:
  • https://www.mathnet.ru/eng/ufn6748
  • https://www.mathnet.ru/eng/ufn/v190/i7/p749
  • This publication is cited in the following 20 articles:
    1. Liangsheng Li, Maoxin Liu, Wen-Long You, Chengjie Zhang, Shengli Zhang, Hongcheng Yin, Zhihe Xiao, Yong Zhu, “Optimizing single-photon quantum radar detection through partially postselected filtering”, Phys. Rev. A, 109:3 (2024)  crossref
    2. Vladislav R. Aslopovsky, Andrei V. Scherbinin, Anastasia V. Bochenkova, “Enhancing Two-Photon Absorption of Green Fluorescent Protein by Quantum Entanglement”, J. Phys. Chem. B, 2024  crossref
    3. M. A. Smirnov, A. M. Smirnova, A. F. Khairullin, O. A. Ermishev, S. A. Moiseev, “Analysis of Schmidt Modes of Ultra-Broadband Biphotons Generated in a Photonic Crystal Fiber”, Bull. Russ. Acad. Sci. Phys., 88:12 (2024), 1961  crossref
    4. G. R. Ivanitskii, “Uncertainties in comparing a human and an android robot”, Phys. Usp., 66:8 (2023), 818–845  mathnet  crossref  crossref  adsnasa  isi
    5. A. K. Fedorov, E. O. Kiktenko, K. Yu. Khabarova, N. N. Kolachevsky, “Quantum entanglement, teleportation, and randomness: Nobel Prize in Physics 2022”, Phys. Usp., 66:11 (2023), 1095–1104  mathnet  crossref  crossref  adsnasa  isi
    6. S. V. Von Gratowski, V. V. Koledov, S. Balashov, “Towards micro nanorobotic platform for single virusonics”, 2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 2023, 1  crossref
    7. Shi-Bao Wu, Zhan-Ming Li, Jun Gao, Heng Zhou, Chang-Shun Wang, Xian-Min Jin, “Classification of quantum correlation using deep learning”, Opt. Express, 31:3 (2023), 3479  crossref
    8. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 65:12 (2022), 1323–1324  mathnet  crossref  crossref  adsnasa  isi
    9. T. S. Woodworth, C. Hermann-Avigliano, Kam Wai Clifford Chan, A. M. Marino, “Transmission estimation at the quantum Cramér-Rao bound with macroscopic quantum light”, EPJ Quantum Technol., 9:1 (2022)  crossref
    10. O. A. Ermishev, M. A. Smirnov, A. F. Khairullin, N. M. Arslanov, “Optimizing the parameters of a periodically poled LiNbO33 nanowaveguide structure for generating ultrabroadband biphotons in the near-IR range”, Bull. Russ. Acad. Sci. Phys., 86:12 (2022), 1502  crossref
    11. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 64:7 (2021), 743–745  mathnet  crossref  crossref  adsnasa
    12. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 64:9 (2021), 964–965  mathnet  crossref  crossref  isi
    13. A. V. Fedorova, M. A. Yurischev, “Quantum entanglement in the anisotropic Heisenberg model with multicomponent DM and KSEA interactions”, Quantum Inf. Process., 20:5 (2021), 169  crossref  mathscinet  isi
    14. M. S. Pochechuev, A. A. Lanin, I. V. Kelmanson, A. S. Chebotarev, E. S. Fetisova, D. S. Bilan, E. K. Shevchenko, A. A. Ivanov, A. B. Fedotov, V. V. Belousov, A. M. Zheltikov, “Multimodal nonlinear-optical imaging of nucleoli”, Opt. Lett., 46:15 (2021), 3608–3611  crossref  isi  scopus
    15. Xinghua Liu, Ilya V Fedotov, Jiru Liu, Yusef Maleki, Christapher Vincent, Sean M Blakley, Aleksei M Zheltikov, “Ultralow-power instant-on photon-pair counting and photon-entanglement analysis”, Laser Phys. Lett., 18:4 (2021), 045401  crossref
    16. G. R. Ivanitskii, A. A. Morozov, “Subject of study — the aging brain”, Phys. Usp., 63:11 (2020), 1092–1113  mathnet  crossref  crossref  adsnasa  isi  elib
    17. A. V. Belinsky, “Wigner's friend paradox: does objective reality not exist?”, Phys. Usp., 63:12 (2020), 1256–1263  mathnet  crossref  crossref  adsnasa  isi  elib
    18. Fedotov V I., Yi Zh., Voronin A.A., Svidzinsky A.A., Sower K., Liu X., Vlasova E., Peng T., Liu X., Moiseev S.A., Belousov V.V., Sokolov V A., Scully M.O., Zheltikov A.M., “Light and Corona: Guided-Wave Readout For Coronavirus Spike Protein-Host-Receptor Binding”, Opt. Lett., 45:19 (2020), 5428–5431  crossref  isi  scopus
    19. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 63:7 (2020), 730–731  mathnet  mathnet  crossref  crossref  isi
    20. Yu. N. Eroshenko, “Physics news on the Internet (based on electronic preprints)”, Phys. Usp., 63:6 (2020), 625–627  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :59
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025