Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2018, Volume 188, Number 1, Pages 106–112
DOI: https://doi.org/10.3367/UFNr.2017.01.038106
(Mi ufn5904)
 

This article is cited in 8 scientific papers (total in 8 papers)

CONFERENCES AND SYMPOSIA
THE 100th ANNIVERSARY OF THE BIRTH OF I~M~LIFSHITZ. CONFERENCES AND SYMPOSIA

Rare-event statistics and modular invariance

S. K. Nechaevab, K. Polovnikovcd

a Interdisciplinary Scientific Center Poncelet (ISCP), Moscow
b Lebedev Physical Institute, Russian Academy of Sciences, Moscow
c Center for Energy Systems, Skolkovo Institute of Science and Technology
d Faculty of Physics, Lomonosov Moscow State University
Full-text PDF (691 kB) Citations (8)
References:
Abstract: Simple geometric arguments based on constructing the Euclid orchard are presented, which explain the equivalence of various types of distributions that result from rare-event statistics. In particular, the spectral density of the exponentially weighted ensemble of linear polymer chains is examined for its number-theoretic properties. It can be shown that the eigenvalue statistics of the corresponding adjacency matrices in the sparse regime show a peculiar hierarchical structure and are described by the popcorn (Thomae) function discontinuous in the dense set of rational numbers. Moreover, the spectral edge density distribution exhibits Lifshitz tails, reminiscent of 1D Anderson localization. Finally, a continuous approximation for the popcorn function is suggested based on the Dedekind $\eta$-function, and the hierarchical ultrametric structure of the popcorn-like distributions is demonstrated to be related to hidden ${\rm SL}(2,Z)$ modular symmetry.
Funding agency Grant number
Russian Foundation for Basic Research 16-02-00252а
European Union's Seventh Framework Programme
This study was partially supported by IRSES (International Research Staff Exchange Scheme), DIONICOS (Dynamic of and in Complex Systems) and RFBR 16-02-00252a grants
Received: February 24, 2017
Accepted: January 18, 2017
English version:
Physics–Uspekhi, 2018, Volume 61, Issue 1, Pages 99–104
DOI: https://doi.org/10.3367/UFNe.2017.01.038106
Bibliographic databases:
Document Type: Article
PACS: 02.30.-f, 02.50.-r, 05.40.-a
Language: Russian
Citation: S. K. Nechaev, K. Polovnikov, “Rare-event statistics and modular invariance”, UFN, 188:1 (2018), 106–112; Phys. Usp., 61:1 (2018), 99–104
Citation in format AMSBIB
\Bibitem{NecPol18}
\by S.~K.~Nechaev, K.~Polovnikov
\paper Rare-event statistics and modular invariance
\jour UFN
\yr 2018
\vol 188
\issue 1
\pages 106--112
\mathnet{http://mi.mathnet.ru/ufn5904}
\crossref{https://doi.org/10.3367/UFNr.2017.01.038106}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018PhyU...61...99N}
\elib{https://elibrary.ru/item.asp?id=32237421}
\transl
\jour Phys. Usp.
\yr 2018
\vol 61
\issue 1
\pages 99--104
\crossref{https://doi.org/10.3367/UFNe.2017.01.038106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429883000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045749757}
Linking options:
  • https://www.mathnet.ru/eng/ufn5904
  • https://www.mathnet.ru/eng/ufn/v188/i1/p106
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :71
    References:43
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024