|
This article is cited in 20 scientific papers (total in 20 papers)
REVIEWS OF TOPICAL PROBLEMS
Metal nanostructures: from clusters to nanocatalysis and sensors
B. M. Smirnov Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow
Abstract:
The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.
Received: November 17, 2016 Revised: February 11, 2017 Accepted: February 14, 2017
Citation:
B. M. Smirnov, “Metal nanostructures: from clusters to nanocatalysis and sensors”, UFN, 187:12 (2017), 1329–1364; Phys. Usp., 60:12 (2017), 1236–1267
Linking options:
https://www.mathnet.ru/eng/ufn5854 https://www.mathnet.ru/eng/ufn/v187/i12/p1329
|
|