Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2001, Volume 171, supplement № 10, Pages 117–121 (Mi ufn5645)  

This article is cited in 3 scientific papers (total in 3 papers)

Quantum computing

Macroscopic quantum superposition of current states in a Josephson-junction loop

F. K. Wilhelma, C. H. van der Wala, A. C. J. ter Haara, R. N. Schoutena, C. J. P. M. Harmansa, J. E. Mooijab, T. P. Orlandob, S. Lloydc

a Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
b Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA, USA
c Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
Full-text PDF (328 kB) Citations (3)
Abstract: Superconducting circuits with Josephson tunnel junctions are interesting systems for research on quantum-mechanical behavior of macroscopic degrees of freedom. A particular realization is a small superconducting loop containing three Josephson junctions. Close to magnetic frustration $1/2$, the physics of this system corresponds to a double well, whose minima correspond to persistent currents of opposite sign. We present DC measurements of the flux indicating a smooth transition close to the degeneracy point even at very low temperatures. Furthermore, microwave-spectroscopy experiments allow for the excitation to the next excited state. The dependence of the energy of the resonance on the applied flux clearly indicates the nature of these states as tunneling-splitted superpositions of flux states. We theoretically analyze the system using a generalized master-equation formulation of the spin-boson model. We address the nature of the measuring process by a switching DC SQUID and the possible interpretation of the spectroscopy data in terms of quantum coherence. We discuss these aspects in the context of further applications as a quantum bit.
English version:
Physics–Uspekhi, 2001, Volume 44, Issue 10 suppl., Pages s117–s121
DOI: https://doi.org/10.1070/1063-7869/44/10S/S26
Bibliographic databases:
Document Type: Article
PACS: 71.10.+Pm, 73.22.Dj, 85.25.-j, 73.40.Gk
Language: English
Citation: F. K. Wilhelm, C. H. van der Wal, A. C. J. ter Haar, R. N. Schouten, C. J. P. M. Harmans, J. E. Mooij, T. P. Orlando, S. Lloyd, “Macroscopic quantum superposition of current states in a Josephson-junction loop”, UFN, 171, supplement № 10 (2001), 117–121; Phys. Usp., 44:10 suppl. (2001), s117–s121
Citation in format AMSBIB
\Bibitem{WilVanTer01}
\by F.~K.~Wilhelm, C.~H.~van der Wal, A.~C.~J.~ter~Haar, R.~N.~Schouten, C.~J.~P.~M.~Harmans, J.~E.~Mooij, T.~P.~Orlando, S.~Lloyd
\paper Macroscopic quantum superposition of current states in a Josephson-junction loop
\jour UFN
\yr 2001
\vol 171
\pages 117--121
\issueinfo supplement № 10
\mathnet{http://mi.mathnet.ru/ufn5645}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001PhyU...44..117W}
\transl
\jour Phys. Usp.
\yr 2001
\vol 44
\issue 10 suppl.
\pages s117--s121
\crossref{https://doi.org/10.1070/1063-7869/44/10S/S26}
Linking options:
  • https://www.mathnet.ru/eng/ufn5645
  • https://www.mathnet.ru/eng/ufn/v171/i13/p117
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024