Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2007, Volume 177, Number 9, Pages 989–1015
DOI: https://doi.org/10.3367/UFNr.0177.200709d.0989
(Mi ufn514)
 

This article is cited in 57 scientific papers (total in 57 papers)

METHODOLOGICAL NOTES

Dynamical chaos: systems of classical mechanics

A. Yu. Loskutov

Physics Department, M. V. Lomonosov Moscow State University
References:
Abstract: This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov–Arnol'd–Moser theory, the Poincaré–Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems — unpredictability, irreversibility, and decay of temporal correlations — are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years — billiards with oscillating boundaries — are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate.
Received: January 31, 2007
Revised: April 25, 2007
English version:
Physics–Uspekhi, 2007, Volume 50, Issue 9, Pages 939–964
DOI: https://doi.org/10.1070/PU2007v050n09ABEH006341
Bibliographic databases:
Document Type: Article
PACS: 05.45.-a, 05.45.Ac
Language: Russian
Citation: A. Yu. Loskutov, “Dynamical chaos: systems of classical mechanics”, UFN, 177:9 (2007), 989–1015; Phys. Usp., 50:9 (2007), 939–964
Citation in format AMSBIB
\Bibitem{Los07}
\by A.~Yu.~Loskutov
\paper Dynamical chaos: systems of classical mechanics
\jour UFN
\yr 2007
\vol 177
\issue 9
\pages 989--1015
\mathnet{http://mi.mathnet.ru/ufn514}
\crossref{https://doi.org/10.3367/UFNr.0177.200709d.0989}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007PhyU...50..939L}
\elib{https://elibrary.ru/item.asp?id=13551786}
\transl
\jour Phys. Usp.
\yr 2007
\vol 50
\issue 9
\pages 939--964
\crossref{https://doi.org/10.1070/PU2007v050n09ABEH006341}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252639900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349081661}
Linking options:
  • https://www.mathnet.ru/eng/ufn514
  • https://www.mathnet.ru/eng/ufn/v177/i9/p989
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:1363
    Full-text PDF :535
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024