Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2007, Volume 177, Number 8, Pages 859–876
DOI: https://doi.org/10.3367/UFNr.0177.200708d.0859
(Mi ufn503)
 

This article is cited in 121 scientific papers (total in 121 papers)

METHODOLOGICAL NOTES

Multifractal analysis of complex signals

A. N. Pavlov, V. S. Anishchenko

International Research Institute of Nonlinear Dynamics, N. G. Chernyshevskii Saratov State University
References:
Abstract: This paper presents the foundations of the continuous wavelet-transform-based multifractal analysis theory and the information necessary for its practical application. It explains generalizations of a multifractal concept to irregular functions, better known as the method of wavelet transform modulus maxima; it investigates the benefits and limitations of this technique in the analysis of complex signals; and it discusses the efficiency of the multifractal formalism in the investigation of nonstationary processes and short signals. The paper also considers the effects of the loss of multifractality in the dynamics of various systems.
Received: May 3, 2006
Revised: March 25, 2007
English version:
Physics–Uspekhi, 2007, Volume 50, Issue 8, Pages 819–834
DOI: https://doi.org/10.1070/PU2007v050n08ABEH006116
Bibliographic databases:
Document Type: Article
PACS: 05.45.-a, 05.45.Pq, 05.45.Tp
Language: Russian
Citation: A. N. Pavlov, V. S. Anishchenko, “Multifractal analysis of complex signals”, UFN, 177:8 (2007), 859–876; Phys. Usp., 50:8 (2007), 819–834
Citation in format AMSBIB
\Bibitem{PavAni07}
\by A.~N.~Pavlov, V.~S.~Anishchenko
\paper Multifractal analysis of complex signals
\jour UFN
\yr 2007
\vol 177
\issue 8
\pages 859--876
\mathnet{http://mi.mathnet.ru/ufn503}
\crossref{https://doi.org/10.3367/UFNr.0177.200708d.0859}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007PhyU...50..819P}
\transl
\jour Phys. Usp.
\yr 2007
\vol 50
\issue 8
\pages 819--834
\crossref{https://doi.org/10.1070/PU2007v050n08ABEH006116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251514700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37049001827}
Linking options:
  • https://www.mathnet.ru/eng/ufn503
  • https://www.mathnet.ru/eng/ufn/v177/i8/p859
  • This publication is cited in the following 121 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024