Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2014, Volume 184, Number 3, Pages 265–272
DOI: https://doi.org/10.3367/UFNr.0184.201403d.0265
(Mi ufn4811)
 

This article is cited in 17 scientific papers (total in 20 papers)

Turbulent flows at very large Reynolds numbers: new lessons learned

G. I. Barenblattabc, A. J. Chorinac, V. M. Prostokishinbdc

a University of California, Berkeley
b Shirshov Institute of Oceanology, Russian Academy of Sciences
c Lawrence Berkeley National Laboratory
d National Research Nuclear University `MEPhI', Moscow
References:
Abstract: The universal (Reynolds-number-independent) von Kármán – Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory.
Received: November 5, 2013
Accepted: November 5, 2013
English version:
Physics–Uspekhi, 2014, Volume 57, Issue 3, Pages 250–256
DOI: https://doi.org/10.3367/UFNe.0184.201403d.0265
Bibliographic databases:
Document Type: Article
PACS: 47.10-g, 47.27.-i, 47.27.Ak, 47.27.Gs
Language: Russian
Citation: G. I. Barenblatt, A. J. Chorin, V. M. Prostokishin, “Turbulent flows at very large Reynolds numbers: new lessons learned”, UFN, 184:3 (2014), 265–272; Phys. Usp., 57:3 (2014), 250–256
Citation in format AMSBIB
\Bibitem{BarChoPro14}
\by G.~I.~Barenblatt, A.~J.~Chorin, V.~M.~Prostokishin
\paper Turbulent flows at very large Reynolds numbers: new lessons learned
\jour UFN
\yr 2014
\vol 184
\issue 3
\pages 265--272
\mathnet{http://mi.mathnet.ru/ufn4811}
\crossref{https://doi.org/10.3367/UFNr.0184.201403d.0265}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014PhyU...57..250B}
\elib{https://elibrary.ru/item.asp?id=24054273}
\transl
\jour Phys. Usp.
\yr 2014
\vol 57
\issue 3
\pages 250--256
\crossref{https://doi.org/10.3367/UFNe.0184.201403d.0265}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337360600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924386658}
Linking options:
  • https://www.mathnet.ru/eng/ufn4811
  • https://www.mathnet.ru/eng/ufn/v184/i3/p265
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :253
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024