Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2012, Volume 182, Number 6, Pages 569–592
DOI: https://doi.org/10.3367/UFNr.0182.201206a.0569
(Mi ufn4107)
 

This article is cited in 129 scientific papers (total in 129 papers)

REVIEWS OF TOPICAL PROBLEMS

Solitons and collapses: two evolution scenarios of nonlinear wave systems

V. E. Zakharovabc, E. A. Kuznetsovabc

a Lebedev Physical Institute, Russian Academy of Sciences
b Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Novosibirsk State University
References:
Abstract: Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schr$\ddot o$dinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian—and hence the stability of the soliton minimizing it—can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
Received: July 14, 2011
Accepted: August 2, 2011
English version:
Physics–Uspekhi, 2012, Volume 55, Issue 6, Pages 535–556
DOI: https://doi.org/10.3367/UFNe.0182.201206a.0569
Bibliographic databases:
Document Type: Article
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb
Language: Russian
Citation: V. E. Zakharov, E. A. Kuznetsov, “Solitons and collapses: two evolution scenarios of nonlinear wave systems”, UFN, 182:6 (2012), 569–592; Phys. Usp., 55:6 (2012), 535–556
Citation in format AMSBIB
\Bibitem{ZakKuz12}
\by V.~E.~Zakharov, E.~A.~Kuznetsov
\paper Solitons and collapses: two evolution scenarios of nonlinear wave systems
\jour UFN
\yr 2012
\vol 182
\issue 6
\pages 569--592
\mathnet{http://mi.mathnet.ru/ufn4107}
\crossref{https://doi.org/10.3367/UFNr.0182.201206a.0569}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012PhyU...55..535Z}
\elib{https://elibrary.ru/item.asp?id=23103609}
\transl
\jour Phys. Usp.
\yr 2012
\vol 55
\issue 6
\pages 535--556
\crossref{https://doi.org/10.3367/UFNe.0182.201206a.0569}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308868100001}
\elib{https://elibrary.ru/item.asp?id=22050496}
Linking options:
  • https://www.mathnet.ru/eng/ufn4107
  • https://www.mathnet.ru/eng/ufn/v182/i6/p569
  • This publication is cited in the following 129 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:1097
    Full-text PDF :413
    References:122
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024