Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2012, Volume 182, Number 6, Pages 569–592
DOI: https://doi.org/10.3367/UFNr.0182.201206a.0569
(Mi ufn4107)
 

This article is cited in 134 scientific papers (total in 134 papers)

REVIEWS OF TOPICAL PROBLEMS

Solitons and collapses: two evolution scenarios of nonlinear wave systems

V. E. Zakharovabc, E. A. Kuznetsovabc

a Lebedev Physical Institute, Russian Academy of Sciences
b Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Novosibirsk State University
References:
Abstract: Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schro¨dinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian—and hence the stability of the soliton minimizing it—can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
Received: July 14, 2011
Accepted: August 2, 2011
English version:
Physics–Uspekhi, 2012, Volume 55, Issue 6, Pages 535–556
DOI: https://doi.org/10.3367/UFNe.0182.201206a.0569
Bibliographic databases:
Document Type: Article
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb
Language: Russian
Citation: V. E. Zakharov, E. A. Kuznetsov, “Solitons and collapses: two evolution scenarios of nonlinear wave systems”, UFN, 182:6 (2012), 569–592; Phys. Usp., 55:6 (2012), 535–556
Citation in format AMSBIB
\Bibitem{ZakKuz12}
\by V.~E.~Zakharov, E.~A.~Kuznetsov
\paper Solitons and collapses: two evolution scenarios of nonlinear wave systems
\jour UFN
\yr 2012
\vol 182
\issue 6
\pages 569--592
\mathnet{http://mi.mathnet.ru/ufn4107}
\crossref{https://doi.org/10.3367/UFNr.0182.201206a.0569}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012PhyU...55..535Z}
\elib{https://elibrary.ru/item.asp?id=23103609}
\transl
\jour Phys. Usp.
\yr 2012
\vol 55
\issue 6
\pages 535--556
\crossref{https://doi.org/10.3367/UFNe.0182.201206a.0569}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308868100001}
\elib{https://elibrary.ru/item.asp?id=22050496}
Linking options:
  • https://www.mathnet.ru/eng/ufn4107
  • https://www.mathnet.ru/eng/ufn/v182/i6/p569
  • This publication is cited in the following 134 articles:
    1. Shunfang Chen, Linjia Wang, Zhuo Fan, Wei Peng, Di Wu, Yuan Zhao, Siliu Xu, “Vortex light bullets in rotating Quasi-Phase-Matched photonic crystals with quadratic and cubic nonlinearity”, Chaos, Solitons & Fractals, 190 (2025), 115777  crossref
    2. Volodymyr M. Lashkin, Oleg K. Cheremnykh, “Interaction of upper hybrid waves with dust-ion-magnetoacoustic waves and stable two-dimensional solitons in dusty plasmas”, Physics of Plasmas, 32:2 (2025)  crossref
    3. M. V. Flamarion, E. Pelinovsky, E. Didenkulova, “Dynamics of Irregular Wave Fields in the Schamel Equation Framework”, Phys. Wave Phen., 33:1 (2025), 9  crossref
    4. Sebastian J. Morris, Christopher J. Ho, Simon M. Fischer, Jiří Etrych, Gevorg Martirosyan, Zoran Hadzibabic, Christoph Eigen, “Scaling laws governing the collapse of a Bose-Einstein condensate”, Phys. Rev. A, 111:4 (2025)  crossref
    5. Xin-Wei Jin, Zhan-Ying Yang, Yanan Liu, Guangyin Jing, “Pulse-driven depinning of magnetic gap modes in ferromagnetic films”, Phys. Rev. B, 109:13 (2024)  crossref
    6. Boris A. Malomed, “Multidimensional soliton systems”, Advances in Physics: X, 9:1 (2024)  crossref
    7. Ming Zhong, Yong Chen, Zhenya Yan, Boris A. Malomed, “Suppression of soliton collapses, modulational instability and rogue-wave excitation in two-Lévy-index fractional Kerr media”, Proc. R. Soc. A., 480:2282 (2024)  crossref
    8. Volodymyr M. Lashkin, “Nonlinear theory of the modulational instability at the ion–ion hybrid frequency and collapse of ion–ion hybrid waves in two-ion plasmas”, Physics of Plasmas, 31:4 (2024)  crossref
    9. Volodymyr M. Lashkin, Oleg K. Cheremnykh, “Fourth-order modon in a rotating self-gravitating fluid”, Physics of Fluids, 36:2 (2024)  crossref
    10. Xin-Wei Jin, Zhan-Ying Yang, Zhi-Min Liao, Guangyin Jing, Wen-Li Yang, “Unveiling stable one-dimensional magnetic solitons in magnetic bilayers”, Phys. Rev. B, 109:1 (2024)  crossref
    11. Andrey Gelash, Sergey Dremov, Rustam Mullyadzhanov, Dmitry Kachulin, “Bi-Solitons on the Surface of a Deep Fluid: An Inverse Scattering Transform Perspective Based on Perturbation Theory”, Phys. Rev. Lett., 132:13 (2024)  crossref
    12. Dongshuai Liu, Yanxia Gao, Dianyuan Fan, Lifu Zhang, “Multiring nested vortex solitons in a radially-periodic potential”, Optics & Laser Technology, 177 (2024), 111181  crossref
    13. L. Ostrovsky, E. Pelinovsky, V. Shrira, Y. Stepanyants, “Localized wave structures: Solitons and beyond”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:6 (2024)  crossref
    14. Maxim Yu. Kagan, Kliment I. Kugel, Alexander L. Rakhmanov, Artem O. Sboychakov, Springer Series in Solid-State Sciences, 201, Electronic Phase Separation in Magnetic and Superconducting Materials, 2024, 289  crossref
    15. Xuemin Yao, Jinying Ma, Gaoqing Meng, “The phase transition of control parameters for the (3+1)-dimensional Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in plasma or ocean dynamics”, Nonlinear Dyn, 2024  crossref
    16. Volodymyr M. Lashkin, “Dynamics of multidimensional fundamental and vortex solitons in random media”, Phys. Rev. E, 109:6 (2024)  crossref
    17. V. P. Ruban, “Collisions of light bullets with different circular polarizations”, JETP Letters, 119:8 (2024), 585–592  mathnet  crossref  crossref
    18. Volodymyr M. Lashkin, Oleg K. Cheremnykh, “Modulational instability and collapse of internal gravity waves in the atmosphere”, Phys. Rev. E, 110:2 (2024)  crossref
    19. Liangwei Dong, Mingjing Fan, Boris A. Malomed, “Three-dimensional vortex and multipole quantum droplets in a toroidal potential”, Chaos, Solitons & Fractals, 188 (2024), 115499  crossref
    20. I.S. Elkamash, B. Reville, N. Lazarides, I. Kourakis, “On the occurrence of freak waves in negative ion plasmas”, Chaos, Solitons & Fractals, 188 (2024), 115531  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:1161
    Full-text PDF :433
    References:133
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025