Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2006, Volume 176, Number 10, Pages 1051–1068
DOI: https://doi.org/10.3367/UFNr.0176.200610c.1051
(Mi ufn382)
 

This article is cited in 238 scientific papers (total in 239 papers)

REVIEWS OF TOPICAL PROBLEMS

Spatial dispersion and negative refraction of light

V. M. Agranovicha, Yu. N. Gartsteinb

a Institute of Spectroscopy, Russian Academy of Sciences
b Derartment of Physics, The University of Texas at Dallas
References:
Abstract: Negative refraction occurs at interfaces as a natural consequence of the negative group velocity of waves in one of the interfacing media. The historical origin of this understanding of the phenomenon is briefly discussed. We consider several physical systems that may exhibit normal electromagnetic waves (polaritons) with negative group velocity at optical frequencies. These systems are analyzed in a unified way provided by the spatial dispersion framework. The framework utilizes the notion of the generalized dielectric tensor $\varepsilon_{ij}(\omega,\mathbf k)$ representing the electromagnetic response of the medium to perturbations of frequency $\omega$ and wave vector $\mathbf k$. Polaritons with negative group velocity can exist in media (whether in natural or in artificial meta-materials) with a sufficiently strong spatial dispersion. Our examples include both gyrotropic and nongyrotropic systems, and bulk and surface polariton waves. We also discuss the relation between the spatial dispersion approach and the more familiar, but more restricted, description involving the dielectric permittivity $\varepsilon(\omega)$ and the magnetic permeability $\mu(\omega)$.
Received: February 13, 2006
Revised: August 3, 2006
English version:
Physics–Uspekhi, 2006, Volume 49, Issue 10, Pages 1029–1044
DOI: https://doi.org/10.1070/PU2006v049n10ABEH006067
Bibliographic databases:
Document Type: Article
PACS: 42.25.-p, 71.36.+c, 78.20.Ci
Language: Russian
Citation: V. M. Agranovich, Yu. N. Gartstein, “Spatial dispersion and negative refraction of light”, UFN, 176:10 (2006), 1051–1068; Phys. Usp., 49:10 (2006), 1029–1044
Citation in format AMSBIB
\Bibitem{AgrGar06}
\by V.~M.~Agranovich, Yu.~N.~Gartstein
\paper Spatial dispersion and negative refraction of light
\jour UFN
\yr 2006
\vol 176
\issue 10
\pages 1051--1068
\mathnet{http://mi.mathnet.ru/ufn382}
\crossref{https://doi.org/10.3367/UFNr.0176.200610c.1051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006PhyU...49.1029A}
\transl
\jour Phys. Usp.
\yr 2006
\vol 49
\issue 10
\pages 1029--1044
\crossref{https://doi.org/10.1070/PU2006v049n10ABEH006067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244185100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33847051663}
Linking options:
  • https://www.mathnet.ru/eng/ufn382
  • https://www.mathnet.ru/eng/ufn/v176/i10/p1051
  • This publication is cited in the following 239 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:2109
    Full-text PDF :397
    References:106
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024