Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2006, Volume 176, Number 10, Pages 1025–1038
DOI: https://doi.org/10.3367/UFNr.0176.200610a.1025
(Mi ufn380)
 

This article is cited in 44 scientific papers (total in 44 papers)

REVIEWS OF TOPICAL PROBLEMS

Ginzburg–Landau theory: the case of two-band superconductors

I. N. Askerzadeab

a Institute of Physics, Azerbaijan National Academy of Sciences
b Department of Physics, Faculty of Sciences, Ankara University, Turkey
References:
Abstract: Recent studies of two-band superconductors using the Ginzburg–Landau (GL) theory are reviewed. The upper and lower critical fields [$H_{c2}(T)$ and $H_{c1}(T)$, respectively], thermodynamic magnetic field $H_{cm}(T)$, critical current density $j_c(T)$, magnetization $M(T)$ near the upper critical field, and the upper critical field $H^{\mathrm{film}}_{c2}(T)$ of thin films are examined from the viewpoint of their temperature dependence at a point $T_c$ using the two-band GL theory. The results are shown to be in good agreement with the experimental data for the bulky samples of superconducting magnesium diboride, $\mathrm{MgB}_2$, and nonmagnetic borocarbides $\mathrm{LuNi}_2\mathrm{B}_2\mathrm{C}$ and $\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$. The specific heat jump turns out to be smaller than that calculated by single-band GL theory. The upper critical field of thin films of two-band superconductors is calculated and the Little–Parks effect is analyzed. It is shown that magnetic flux quantization and the relationship between the surface critical magnetic field $H_{c3}(T)$ and the upper critical field $H_{c2}(T)$ are the same as in the single-band GL theory. Extension of the two-band GL theory to the case of layered anisotropy is presented. The anisotropy parameter of the upper critical field $H_{c2}$ and the London penetration depth $\lambda$, calculated for $\mathrm{MgB}_2$ single crystals, are in good agreement with the experimental data and show opposite temperature behavior to that in single-band GL theory.
Received: January 25, 2006
English version:
Physics–Uspekhi, 2006, Volume 49, Issue 10, Pages 1003–1016
DOI: https://doi.org/10.1070/PU2006v049n10ABEH006055
Bibliographic databases:
Document Type: Article
PACS: 74.20.De, 74.25.-q, 74.70.Ad
Language: Russian
Citation: I. N. Askerzade, “Ginzburg–Landau theory: the case of two-band superconductors”, UFN, 176:10 (2006), 1025–1038; Phys. Usp., 49:10 (2006), 1003–1016
Citation in format AMSBIB
\Bibitem{Ask06}
\by I.~N.~Askerzade
\paper Ginzburg--Landau theory: the case of two-band superconductors
\jour UFN
\yr 2006
\vol 176
\issue 10
\pages 1025--1038
\mathnet{http://mi.mathnet.ru/ufn380}
\crossref{https://doi.org/10.3367/UFNr.0176.200610a.1025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006PhyU...49.1003A}
\transl
\jour Phys. Usp.
\yr 2006
\vol 49
\issue 10
\pages 1003--1016
\crossref{https://doi.org/10.1070/PU2006v049n10ABEH006055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244185100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33847041105}
Linking options:
  • https://www.mathnet.ru/eng/ufn380
  • https://www.mathnet.ru/eng/ufn/v176/i10/p1025
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024