Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2011, Volume 181, Number 6, Pages 627–646
DOI: https://doi.org/10.3367/UFNr.0181.201106c.0627
(Mi ufn2562)
 

This article is cited in 11 scientific papers (total in 11 papers)

REVIEWS OF TOPICAL PROBLEMS

Acoustic gradient barriers (exactly solvable models)

A. B. Shvartsburgab, N. S. Erokhina

a Department of Cosmogeophysics, Space Research Institute, Russian Academy of Sciences
b Joint Institute of High Temperatures, Russian Academy of Sciences
References:
Abstract: This paper reviews the physical fundamentals and mathematical formalism for problems concerning acoustic waves passing through gradient wave barriers formed by a continuous one-dimensional spatial distribution of the density and/or elastic parameters of a medium in a finite-thickness layer. The physical mechanisms of such processes involve nonlocal (geometric) normal and anomalous dispersion determined by the profiles and geometric parameters of the gradient barrier. The relevant mathematics relies on exactly solvable gradient barrier models with up to three free parameters and on the auxiliary barrier method with which the exactly solvable models found can be used to build new, also exactly solvable, models for such barriers. The longitudinal and shear wave transmission spectra through the gradient barriers considered are presented, and the dependence of these spectra on the gradient and curvature of the density distribution and on the elastic parameters of the barrier is expressed using general formulas corresponding to the geometrical and abnormal geometric dispersion. Examples of reflectionless tunneling of sound through gradient barriers formed either by the elastic parameter distribution in an inhomogeneous layer or by curvilinear boundaries of a homogeneous layer are considered. It is also shown that by using subwavelength gradient barriers and periodic structures composed of them, phonon crystal elements can be fabricated.
Received: September 8, 2010
Revised: November 20, 2010
Accepted: January 12, 2011
English version:
Physics–Uspekhi, 2011, Volume 54, Issue 6, Pages 605–623
DOI: https://doi.org/10.3367/UFNe.0181.201106c.0627
Bibliographic databases:
Document Type: Article
PACS: 43.60.Vx, 51.40.+p, 62.60.+v, 68.35.Iv
Language: Russian
Citation: A. B. Shvartsburg, N. S. Erokhin, “Acoustic gradient barriers (exactly solvable models)”, UFN, 181:6 (2011), 627–646; Phys. Usp., 54:6 (2011), 605–623
Citation in format AMSBIB
\Bibitem{ShvEro11}
\by A.~B.~Shvartsburg, N.~S.~Erokhin
\paper Acoustic gradient barriers (exactly solvable models)
\jour UFN
\yr 2011
\vol 181
\issue 6
\pages 627--646
\mathnet{http://mi.mathnet.ru/ufn2562}
\crossref{https://doi.org/10.3367/UFNr.0181.201106c.0627}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011PhyU...54..605S}
\transl
\jour Phys. Usp.
\yr 2011
\vol 54
\issue 6
\pages 605--623
\crossref{https://doi.org/10.3367/UFNe.0181.201106c.0627}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296147800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052788744}
Linking options:
  • https://www.mathnet.ru/eng/ufn2562
  • https://www.mathnet.ru/eng/ufn/v181/i6/p627
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024