Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2002, Volume 172, Number 11, Pages 1271–1282
DOI: https://doi.org/10.3367/UFNr.0172.200211c.1271
(Mi ufn2072)
 

METHODOLOGICAL NOTES

An invariant formulation of the potential integration method for the vortical equation of motion of a material point

A. V. Kukushkin

Nizhny Novgorod State Technical University
References:
Abstract: A relativistic procedure for deriving the kinetic part of the generalized Euler equation is proposed as an argument to justify the application of the vortical equation of motion to the solution of classical discrete dynamics problems. An invariant formulation of the potential integration method for the vortical equation of motion is given for a definite class of two-dimensional motions. To demonstrate the efficiency of the method, a number of well-known theorems on the dynamics of a material point are proved. A new result of the study is the fact that zero-energy hyperelliptic motions are related to the field of 'multiplicative' type forces.
Received: July 20, 2001
English version:
Physics–Uspekhi, 2002, Volume 45, Issue 11, Pages 1153–1164
DOI: https://doi.org/10.1070/PU2002v045n11ABEH001171
Bibliographic databases:
Document Type: Article
PACS: 45.20.-d, 45.50.Pk
Language: Russian


Citation: A. V. Kukushkin, “An invariant formulation of the potential integration method for the vortical equation of motion of a material point”, UFN, 172:11 (2002), 1271–1282; Phys. Usp., 45:11 (2002), 1153–1164
Linking options:
  • https://www.mathnet.ru/eng/ufn2072
  • https://www.mathnet.ru/eng/ufn/v172/i11/p1271
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :81
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024