Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2005, Volume 175, Number 7, Pages 705–733
DOI: https://doi.org/10.3367/UFNr.0175.200507b.0705
(Mi ufn198)
 

This article is cited in 102 scientific papers (total in 102 papers)

REVIEWS OF TOPICAL PROBLEMS

Geometric theory of defects

M. O. Katanaev

V. A. Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: A description of dislocation and disclination defects in terms of the Riemann – Cartan geometry is given, with the curvature and torsion tensors interpreted as the surface densities of the Frank and Burgers vectors, respectively. A new free-energy expression describing the static distribution of defects is presented and equations of nonlinear elasticity theory are used to specify the coordinate system. Application of the Lorentz gauge leads to equations for the principal chiral SO(3) field. In the defect-free case, the geometric model reduces to elasticity theory for the displacement vector field and to a principal chiral SO(3)-field model for the spin structure. As illustrated by the example of a wedge dislocation, elasticity theory reproduces only the linear approximation of the geometric theory of defects. It is shown that the equations of asymmetric elasticity theory for Cosserat media can also be naturally incorporated into the geometric theory as gauge conditions. As an application of the theory, phonon scattering on a wedge dislocation is considered. The energy spectrum of impurities in the field of a wedge dislocation is also discussed.
Received: July 21, 2004
Revised: March 31, 2005
English version:
Physics–Uspekhi, 2005, Volume 48, Issue 7, Pages 675–701
DOI: https://doi.org/10.1070/PU2005v048n07ABEH002027
Bibliographic databases:
Document Type: Article
PACS: 02.40.-k, 46.05.+b, 61.72.Lk, 63.20.Mt
Language: Russian
Citation: M. O. Katanaev, “Geometric theory of defects”, UFN, 175:7 (2005), 705–733; Phys. Usp., 48:7 (2005), 675–701
Citation in format AMSBIB
\Bibitem{Kat05}
\by M.~O.~Katanaev
\paper Geometric theory of defects
\jour UFN
\yr 2005
\vol 175
\issue 7
\pages 705--733
\mathnet{http://mi.mathnet.ru/ufn198}
\crossref{https://doi.org/10.3367/UFNr.0175.200507b.0705}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005PhyU...48..675K}
\transl
\jour Phys. Usp.
\yr 2005
\vol 48
\issue 7
\pages 675--701
\crossref{https://doi.org/10.1070/PU2005v048n07ABEH002027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233309400002}
Linking options:
  • https://www.mathnet.ru/eng/ufn198
  • https://www.mathnet.ru/eng/ufn/v175/i7/p705
  • This publication is cited in the following 102 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:943
    Full-text PDF :333
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024