Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2023, Volume 193, Number 12, Pages 1340–1355
DOI: https://doi.org/10.3367/UFNr.2023.09.039554
(Mi ufn15607)
 

This article is cited in 4 scientific papers (total in 4 papers)

METHODOLOGICAL NOTES

Magnetorotational instability in Keplerian disks: a nonlocal approach

N. I. Shakuraa, K. A. Postnovab, D. A. Kolesnikovac, G. V. Lipunovaad

a Lomonosov Moscow State University, Sternberg State Astronomical Institute
b Kazan Federal University
c The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University
d Max-Planck-Institut für Radioastronomie, Bonn
References:
Abstract: We revisit the modal analysis of small perturbations in Keplerian ideal gas flows with a constant vertical magnetic field leading to magnetorotational instability (MRI) using the nonlocal approach. In the general case, MRI modes are described by a Schr$\ddot {\rm o}$dinger-like differential equation with some effective potential, including ‘repulsive’ ($1/r^{2}$) and ‘attractive’ ($-1/r^{3}$) terms, and are quantized. In shallow potentials, there are no stationary ‘energy levels.’ In thin Keplerian accretion discs, the perturbation wavelengths $\lambda =2\pi /k_{z}$ are smaller than the disc semi-thickness $h$ only in ‘deep’ potential wells. We find that there is a critical magnetic field for the MRI to develop. The instability arises for magnetic fields below this critical value. In thin accretion discs, at low background Alfv$\acute {\rm e}$n velocity $c_{\rm A}\ll (c_{\rm A})_{\rm cr}$, the MRI instability increment $\omega $ is suppressed compared to the value obtained in the local perturbation analysis, $\omega \approx -\sqrt {3}{\rm i}c_{\rm A}k_{z}$. We also investigate for the first time the case of a radially variable background magnetic field.
Funding agency Grant number
Russian Science Foundation 21-12-00141
This work was supported by the Russian Science Foundation (grant no. 21-12-00141).
Received: December 16, 2022
Revised: September 21, 2023
Accepted: September 22, 2023
English version:
Physics–Uspekhi, 2023, Volume 66, Issue 12, Pages 1262–1276
DOI: https://doi.org/10.3367/UFNe.2023.09.039554
Bibliographic databases:
Document Type: Article
PACS: 95.30.Qd, 97.10.Gz
Language: Russian
Citation: N. I. Shakura, K. A. Postnov, D. A. Kolesnikov, G. V. Lipunova, “Magnetorotational instability in Keplerian disks: a nonlocal approach”, UFN, 193:12 (2023), 1340–1355; Phys. Usp., 66:12 (2023), 1262–1276
Citation in format AMSBIB
\Bibitem{ShaPosKol23}
\by N.~I.~Shakura, K.~A.~Postnov, D.~A.~Kolesnikov, G.~V.~Lipunova
\paper Magnetorotational instability in Keplerian disks: a nonlocal approach
\jour UFN
\yr 2023
\vol 193
\issue 12
\pages 1340--1355
\mathnet{http://mi.mathnet.ru/ufn15607}
\crossref{https://doi.org/10.3367/UFNr.2023.09.039554}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023PhyU...66.1262S}
\transl
\jour Phys. Usp.
\yr 2023
\vol 66
\issue 12
\pages 1262--1276
\crossref{https://doi.org/10.3367/UFNe.2023.09.039554}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001172931200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85183001473}
Linking options:
  • https://www.mathnet.ru/eng/ufn15607
  • https://www.mathnet.ru/eng/ufn/v193/i12/p1340
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :3
    References:24
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024