Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2023, Volume 193, Number 11, Pages 1237–1247
DOI: https://doi.org/10.3367/UFNr.2022.12.039303
(Mi ufn15569)
 

METHODOLOGICAL NOTES

Machine learning for the search for topological spin textures

G. V. Paradezhenkoa, A. A. Pervishkoab, D. I. Yudinab

a Skolkovo Institute of Science and Technology, Moscow
b Far Eastern Federal University, Vladivostok
References:
Abstract: We present an alternative method for numerical modeling of topological magnetic textures using a neural network algorithm. We discuss a model of localized spins where topological magnetic textures are stabilized due to a delicate interplay between the symmetric exchange interaction, and the antisymmetric interaction caused by exchange–relativistic effects, as well as a model of an itinerant magnet where noncoplanar spin configurations emerge when taking multispin interactions into account. The viability of the proposed method is illustrated with the formation of lattices of skyrmions and antiskyrmions, magnetic hedgehogs, and skyrmion tubes in two-dimensional and three-dimensional magnetic systems.
Funding agency Grant number
Russian Science Foundation 22-72-00021
22-11-00074
RF President scholarship СП-1640.2021.5
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-607
The work was carried out with financial support from the Russian Science Foundation, grant 22-72-00021 and a scholarship from the President of the Russian Federation, SP-1640.2021.5, and also by the Russian Science Foundation, grant 22-11-00074 and the Government of the Russian Federation for the grant for state support of scientific research conducted under the guidance of leading scientists in Russian institutions of higher education, scientific organizations, and state research centers (Megagrants program, project no. 075-15-2021-607).
Received: October 19, 2022
Revised: November 24, 2022
Accepted: December 21, 2022
English version:
Physics–Uspekhi, 2023, Volume 66, Issue 11, Pages 1164–1173
DOI: https://doi.org/10.3367/UFNe.2022.12.039303
Bibliographic databases:
Document Type: Article
PACS: 07.05.Mh, 75.10.-b, 75.30.-m, 75.40.Cx
Language: Russian
Citation: G. V. Paradezhenko, A. A. Pervishko, D. I. Yudin, “Machine learning for the search for topological spin textures”, UFN, 193:11 (2023), 1237–1247; Phys. Usp., 66:11 (2023), 1164–1173
Citation in format AMSBIB
\Bibitem{ParPerYud23}
\by G.~V.~Paradezhenko, A.~A.~Pervishko, D.~I.~Yudin
\paper Machine learning for the search for topological spin textures
\jour UFN
\yr 2023
\vol 193
\issue 11
\pages 1237--1247
\mathnet{http://mi.mathnet.ru/ufn15569}
\crossref{https://doi.org/10.3367/UFNr.2022.12.039303}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023PhyU...66.1164P}
\transl
\jour Phys. Usp.
\yr 2023
\vol 66
\issue 11
\pages 1164--1173
\crossref{https://doi.org/10.3367/UFNe.2022.12.039303}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001131650500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85182587213}
Linking options:
  • https://www.mathnet.ru/eng/ufn15569
  • https://www.mathnet.ru/eng/ufn/v193/i11/p1237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :2
    References:19
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024