Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 1996, Volume 166, Number 4, Pages 363–390
DOI: https://doi.org/10.3367/UFNr.0166.199604b.0363
(Mi ufn1174)
 

This article is cited in 199 scientific papers (total in 199 papers)

REVIEWS OF TOPICAL PROBLEMS

Synchronisation in neural networks

H. D. Abarbanela, M. I. Rabinovichb, A. Selverstona, M. V. Bazhenovb, R. Huertaa, M. M. Sushchikb, L. L. Rubchinskiib

a University of California, Santa Barbara, Department of Physics
b Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod
Abstract: The construction of a dynamical theory of neural networks has been a goal of physicists, mathematicians and biologists for many years now. Experimental breakthroughs in modern neurobiology have allowed researchers to approach this goal. Significant advances have been made for small neural networks, which are generators of the rhythmic activities of living organisms. The subject of the present review is the problem of synchronisation, one of the major aspects of the dynamical theory. It is shown that synchronisation plays a key role in the activity of both minimal neural networks (neural pair) and neural assemblies with a large number of elements (cortex).
Received: March 1, 1996
English version:
Physics–Uspekhi, 1996, Volume 39, Issue 4, Pages 337–362
DOI: https://doi.org/10.1070/PU1996v039n04ABEH000141
Bibliographic databases:
Document Type: Article
PACS: 87.10.+e
Language: Russian


Citation: H. D. Abarbanel, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Huerta, M. M. Sushchik, L. L. Rubchinskii, “Synchronisation in neural networks”, UFN, 166:4 (1996), 363–390; Phys. Usp., 39:4 (1996), 337–362
Linking options:
  • https://www.mathnet.ru/eng/ufn1174
  • https://www.mathnet.ru/eng/ufn/v166/i4/p363
  • This publication is cited in the following 199 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025