Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2011, Volume 3, Issue 2, Pages 27–32 (Mi ufa91)  

This article is cited in 4 scientific papers (total in 4 papers)

Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions

N. S. Imanbaeva, M. A. Sadybekovb

a Ahmet Yesevi International Kazakh-Turkish University, Shymkent, Kazakhstan
b Institute of mathematics, informatics and mechanics, Almaty, Kazakhstan
References:
Abstract: The article is devoted to a spectral problem for a multiple differentiation operator with an integral perturbation of boundary conditions of one type which are regular, but not strongly regular. The unperturbed problem has an asymptotically simple spectrum, and its system of normalized eigenfunctions creates the Riesz basis. We construct the characteristic determinant of the spectral problem with an integral perturbation of the boundary conditions. The perturbed problem can have any finite number of multiple eigenvalues. Therefore, its root subspaces consist of its eigen and (maybe) adjoint functions. It is shown that the Riesz basis property of a system of eigen and adjoint functions is stable with respect to integral perturbations of the boundary condition.
Keywords: Riesz basis, regular boundary conditions, eigenvalues, root functions, spectral problem, integral perturbation of boundary condition, characteristic determinant.
Received: 25.03.2011
Russian version:
Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 2, Pages 28–33
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: English
Original paper language: Russian
Citation: N. S. Imanbaev, M. A. Sadybekov, “Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions”, Ufimsk. Mat. Zh., 3:2 (2011), 28–33; Ufa Math. J., 3:2 (2011), 27–32
Citation in format AMSBIB
\Bibitem{ImaSad11}
\by N.~S.~Imanbaev, M.~A.~Sadybekov
\paper Stability of basis property of a~type of problems on eigenvalues with nonlocal perturbation of boundary conditions
\jour Ufimsk. Mat. Zh.
\yr 2011
\vol 3
\issue 2
\pages 28--33
\mathnet{http://mi.mathnet.ru/ufa91}
\zmath{https://zbmath.org/?q=an:1249.34250}
\transl
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 2
\pages 27--32
Linking options:
  • https://www.mathnet.ru/eng/ufa91
  • https://www.mathnet.ru/eng/ufa/v3/i2/p28
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:633
    Russian version PDF:230
    English version PDF:25
    References:85
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024