Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2011, Volume 3, Issue 1, Pages 30–41 (Mi ufa79)  

This article is cited in 5 scientific papers (total in 5 papers)

On orthosimilar systems in a space of analytical functions and the problem of describing the dual space

V. V. Napalkov (Jr.)

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
References:
Abstract: We consider an orthosimilar system with the measure $\mu$ in the space of analytical functions $H$ on the domain $G\subset\mathbb C$. Let $K_H(\xi,t)$, $\xi,t\in G$, be a reproduction kernel in the space $H$. We claim that a system $\{K_H(\xi,t)\}_{t\in G}$ is the orthosimilar system with the measure $\mu$ in the space $H$ if and only if the space $H$ coincides with the space $B_2(G,\mu)$. A problem of describing the dual space in terms of the Hilbert transform is considered. This problem is reduced to the problem of existence of a special orthosimilar system in $B_2(G,\mu)$. We prove that the space $\widetilde B_2(G,\mu)$ is the only space with a reproduction kernel and it consists of functions given on the domain $\mathbb C\setminus\overline G$ with an orthosimilar system $\{\frac1{(z-\xi)^2}\}_{\xi\in G}$ with the measure $\mu$.
Keywords: Bergman space, Hilbert spaces, reproducing kernel, orthosimilar system, Hilbert transform.
Received: 17.01.2011
Russian version:
Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 1, Pages 31–42
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: V. V. Napalkov (Jr.), “On orthosimilar systems in a space of analytical functions and the problem of describing the dual space”, Ufimsk. Mat. Zh., 3:1 (2011), 31–42; Ufa Math. J., 3:1 (2011), 30–41
Citation in format AMSBIB
\Bibitem{Nap11}
\by V.~V.~Napalkov (Jr.)
\paper On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space
\jour Ufimsk. Mat. Zh.
\yr 2011
\vol 3
\issue 1
\pages 31--42
\mathnet{http://mi.mathnet.ru/ufa79}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165174}
\zmath{https://zbmath.org/?q=an:1240.46053}
\transl
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 1
\pages 30--41
Linking options:
  • https://www.mathnet.ru/eng/ufa79
  • https://www.mathnet.ru/eng/ufa/v3/i1/p31
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:1478
    Russian version PDF:346
    English version PDF:19
    References:106
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024