Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2024, Volume 16, Issue 2, Pages 15–25
DOI: https://doi.org/10.13108/2024-16-2-15
(Mi ufa690)
 

On zeros and Taylor coefficients of entire function of logarithmic growth

G. G. Braichevab

a Moscow Pedagogical State University, Krasnoprudnaya str. 14, 107140, Moscow, Russia
b Peoples Friendship University of Russia (RUDN University), Nikolskii Mathematical Institute, 6 Miklukho--Maklaya str. 6, 117198, Moscow, Russia
References:
Abstract: In the paper for an important class of entire functions of zero order we find out straightforward relations between the increasing rate of the sequences of zeroes and the decay rate of the Taylor coefficients. Applying the coefficient characterization of the growth of entire functions and some Tauberian theorems from the convex analysis, we obtain asymptotically sharp estimates relating the zeroes $\lambda_n$ and Hadamard rectified Taylor coefficients $\hat{f_n}$ for entire functions of the logarithmic growth. In the cases, when the function possesses a regular behavior of some kind, the mentioned estimates become asymptotically sharp formulas. For instance, if an entire function has a Borel regular growth and the point $a=0$ is not its Borel exceptional value, then as $n\to\infty$ the asymptotic identity $\ln |\lambda_n|\sim \ln(\hat{f}_{n-1}/\hat{f_n})$ holds true. The result is true for the functions of perfectly regular logarithmic growth and in the latter case we can additionally state that $\ln|\lambda_1\lambda_2 \ldots \lambda_n|\sim\ln\hat{f_n}^{-1}$ as $n\to\infty$.
Keywords: entire function, sequence of zeroes, Taylor coefficients, Hadamard rectified Taylor coefficients, logarithmic order, logarithmic type.
Received: 18.08.2023
Document Type: Article
UDC: 517.547.22
MSC: 30D15, 30B10
Language: English
Original paper language: Russian
Citation: G. G. Braichev, “On zeros and Taylor coefficients of entire function of logarithmic growth”, Ufa Math. J., 16:2 (2024), 15–25
Citation in format AMSBIB
\Bibitem{Bra24}
\by G.~G.~Braichev
\paper On zeros and Taylor coefficients of entire function of logarithmic growth
\jour Ufa Math. J.
\yr 2024
\vol 16
\issue 2
\pages 15--25
\mathnet{http://mi.mathnet.ru//eng/ufa690}
\crossref{https://doi.org/10.13108/2024-16-2-15}
Linking options:
  • https://www.mathnet.ru/eng/ufa690
  • https://doi.org/10.13108/2024-16-2-15
  • https://www.mathnet.ru/eng/ufa/v16/i2/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:33
    Russian version PDF:8
    English version PDF:7
    References:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024