Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2023, Volume 15, Issue 2, Pages 55–64
DOI: https://doi.org/10.13108/2023-15-2-55
(Mi ufa653)
 

This article is cited in 2 scientific papers (total in 2 papers)

Averaging of random affine transformations of functions domain

R. Sh. Kalmetevab, Yu. N. Orlova, V. Zh. Sakbaevabc

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
b Miusskaya sq. 4, 125047, Moscow, Russia
c Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia
References:
Abstract: We study the averaging of Feynman-Chernoff iterations of random operator-valued strongly continuous functions, the values of which are bounded linear operators on separable Hilbert space. In this work we consider averaging for a certain family of such random operator-valued functions. Linear operators, being the values of the considered functions, act in the Hilbert space of square integrable functions on a finite-dimensional Euclidean space and they are defined by random affine transformations of the functions domain. At the same time, the compositions of independent identically distributed random affine transformations are a non-commutative analogue of random walk.
For an operator-valued function being an averaging of Feynman-Chernoff iterations, we prove an upper bound for its norm and we also establish that the closure of the derivative of this operator-valued function at zero is a generator a strongly continuous semigroup. In the work we obtain sufficient conditions for the convergence of the mathematical expectation of the sequence of Feynman-Chernoff iterations to the semigroup resolving the Cauchy problem for the corresponding Fokker-Planck equation.
Keywords: Feynman-Chernoff iterations, Chernoff theorem, operator-valued random process, Fokker-Planck equation.
Received: 21.12.2022
Russian version:
Ufimskii Matematicheskii Zhurnal, 2023, Volume 15, Issue 2, Pages 55–64
Document Type: Article
UDC: 517.983
Language: English
Original paper language: Russian
Citation: R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Averaging of random affine transformations of functions domain”, Ufimsk. Mat. Zh., 15:2 (2023), 55–64; Ufa Math. J., 15:2 (2023), 55–64
Citation in format AMSBIB
\Bibitem{KalOrlSak23}
\by R.~Sh.~Kalmetev, Yu.~N.~Orlov, V.~Zh.~Sakbaev
\paper Averaging of random affine transformations of functions domain
\jour Ufimsk. Mat. Zh.
\yr 2023
\vol 15
\issue 2
\pages 55--64
\mathnet{http://mi.mathnet.ru/ufa653}
\transl
\jour Ufa Math. J.
\yr 2023
\vol 15
\issue 2
\pages 55--64
\crossref{https://doi.org/10.13108/2023-15-2-55}
Linking options:
  • https://www.mathnet.ru/eng/ufa653
  • https://doi.org/10.13108/2023-15-2-55
  • https://www.mathnet.ru/eng/ufa/v15/i2/p55
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:62
    Russian version PDF:14
    English version PDF:19
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024