Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2023, Volume 15, Issue 2, Pages 31–41
DOI: https://doi.org/10.13108/2023-15-2-31
(Mi ufa651)
 

On rate of decreasing of extremal function in Carleman class

R. A. Gaisin

Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia
References:
Abstract: We study the issues related with Levinson-Sjöberg-Wolf type theorems in the complex analysis and, in particular, we discuss a famous question posed in 70s by E.M. Dyn'kin on an effective bound for majorant of the growth of an analytic function in the vicinity of the set of singular points and another close problem on the rate of decaying of an extremal function in a non-quasianalytic Carleman class in the vicinity of the point, at which all the derivatives of the functions from this class vanish. Exact asymptotic estimates for the best majorant for the growth in the vicinity of the singularities were found by V. Matsaev and M. Sodin in 2002.
Some bounds, both from above and below, for an extremal function in the Carleman class were obtained by A.M. Gaisin in 2018 but they turned out to be not very close to exact values of this function. In the present paper we obtain sharp two-sided estimates for the extremal function.
Keywords: non-quasianalytic Carleman class, Levinson-Sjöberg type theorem, extremal function, regular sequence, associated weight.
Received: 12.12.2022
Russian version:
Ufimskii Matematicheskii Zhurnal, 2023, Volume 15, Issue 2, Pages 31–41
Document Type: Article
UDC: 517.53
MSC: 26Е10, 28А10
Language: English
Original paper language: Russian
Citation: R. A. Gaisin, “On rate of decreasing of extremal function in Carleman class”, Ufimsk. Mat. Zh., 15:2 (2023), 31–41; Ufa Math. J., 15:2 (2023), 31–41
Citation in format AMSBIB
\Bibitem{Gai23}
\by R.~A.~Gaisin
\paper On rate of decreasing of extremal function in Carleman class
\jour Ufimsk. Mat. Zh.
\yr 2023
\vol 15
\issue 2
\pages 31--41
\mathnet{http://mi.mathnet.ru/ufa651}
\transl
\jour Ufa Math. J.
\yr 2023
\vol 15
\issue 2
\pages 31--41
\crossref{https://doi.org/10.13108/2023-15-2-31}
Linking options:
  • https://www.mathnet.ru/eng/ufa651
  • https://doi.org/10.13108/2023-15-2-31
  • https://www.mathnet.ru/eng/ufa/v15/i2/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:44
    Russian version PDF:8
    English version PDF:6
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024