Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 4, Pages 141–149
DOI: https://doi.org/10.13108/2022-14-4-141
(Mi ufa639)
 

Remarks on Garsia entropy and multidimensional Erdös measures

V. I. Oseledetsab, V. L. Kulikovc, E. F. Olekhovac

a N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences Kosygina str., 4, 119991, Moscow, Russia
b Lomonosov Moscow State University, Vorobievy Gory, 1, 119991, Moscow, Russia
c Financial University under the Government of the Russian Federation, Leningradsky av., 49, 125993, Moscow, Russia
References:
Abstract: We conjecture that the Garsia entropy coincides with the entropy of the invariant multidimensional Erdös measure. This conjecture is true for all Garsia numbers. We also specify the algebraic unit being non-Pisot number, for which this conjecture is true.
We prove a theorem, which generalizes the Garsia theorem on the absolute continuity of the infinite Bernoulli convolution for the Garsia numbers. The proof uses relations between the multidimensional Erdös problem and the one-dimensional Erdös problem.
We discuss a connection between the entropy of the invariant Erdös measure and the conditional Ledrappier–Young entropies. We also formulate three conjectures and obtain some consequences from them. In particular, we conjecture that the Hausdorff dimension of the Erdös measure is equal to the Ledrappier–Young dimension of conditional measure for the multidimensional invariant Erdös measure along the unstable foliation corresponding to the top Lyapunov exponent of multiplicity 1. For 2-numbers, we obtain formulae for the Hausdorff dimension of Erdös measures on the unstable plane.
Keywords: Garsia entropy, Hausdorff dimension of the measure, Erdös measure, Hochman formula, Lyapunov exponent.
Received: 13.11.2021
Bibliographic databases:
Document Type: Article
MSC: 60J10, 62M05, 28A80
Language: English
Original paper language: English
Citation: V. I. Oseledets, V. L. Kulikov, E. F. Olekhova, “Remarks on Garsia entropy and multidimensional Erdös measures”, Ufa Math. J., 14:4 (2022), 141–149
Citation in format AMSBIB
\Bibitem{OseKulOle22}
\by V.~I.~Oseledets, V.~L.~Kulikov, E.~F.~Olekhova
\paper Remarks on Garsia entropy and multidimensional Erd\"os measures
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 4
\pages 141--149
\mathnet{http://mi.mathnet.ru//eng/ufa639}
\crossref{https://doi.org/10.13108/2022-14-4-141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527702}
Linking options:
  • https://www.mathnet.ru/eng/ufa639
  • https://doi.org/10.13108/2022-14-4-141
  • https://www.mathnet.ru/eng/ufa/v14/i4/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Óôèìñêèé ìàòåìàòè÷åñêèé æóðíàë
    Statistics & downloads:
    Abstract page:64
    Russian version PDF:13
    English version PDF:15
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024