Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 4, Pages 127–140
DOI: https://doi.org/10.13108/2022-14-4-127
(Mi ufa631)
 

This article is cited in 1 scientific paper (total in 1 paper)

Singular Hahn–Hamiltonian systems

B. P. Allahverdieva, H. Tunab

a Süleyman Demirel University, Department of Mathematics, 32260 Isparta, Turkey
b Mehmet Akif Ersoy University, Department of Mathematics, 15030 Burdur, Turkey
References:
Abstract: In this work, we study a Hahn–Hamiltonian system in the singular case. For this system, the Titchmarsh–Weyl theory is established. In this context, the first part provides a summary of the relevant literature and some necessary fundamental concepts of the Hahn calculus. To pass from the Hahn difference expression to operators, we define the Hilbert space $L_{\omega,q,W} ^{2}((\omega_{0},\infty);\mathbb{C}^{2n})$ in the second part of the work. The corresponding maximal operator $L_{\max}$ are introduced. For the Hahn–Hamiltonian system, we proved Green formula. Then we introduce a regular self-adjoint Hahn–Hamiltonian system. In the third part of the work, we study Titchmarsh-Weyl functions $M(\lambda)$ and circles $\mathcal{C}(a,\lambda)$ for this system. These circles proved to be embedded one to another. The number of square-integrable solutions of the Hahn–Hamilton system is studied. In the fourth part of the work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint operator in the fifth part of the work.
Keywords: Hahn–Hamiltonian system, singular point, Titchmarsh–Weyl theory.
Received: 12.10.2021
Bibliographic databases:
Document Type: Article
MSC: 39A13, 34B20
Language: English
Original paper language: English
Citation: B. P. Allahverdiev, H. Tuna, “Singular Hahn–Hamiltonian systems”, Ufa Math. J., 14:4 (2022), 127–140
Citation in format AMSBIB
\Bibitem{AllTun22}
\by B.~P.~Allahverdiev, H.~Tuna
\paper Singular Hahn--Hamiltonian systems
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 4
\pages 127--140
\mathnet{http://mi.mathnet.ru//eng/ufa631}
\crossref{https://doi.org/10.13108/2022-14-4-127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4516564}
Linking options:
  • https://www.mathnet.ru/eng/ufa631
  • https://doi.org/10.13108/2022-14-4-127
  • https://www.mathnet.ru/eng/ufa/v14/i4/p131
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:70
    Russian version PDF:10
    English version PDF:13
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024